精英家教网 > 高中数学 > 题目详情
已知p(x)=x,fn(x)=(1+x)n
(1)若g(x)=p(1)f5(x)+p(2)f6(x)+p(3)f7(x),求g(x)的展开式中x5的系数;
(2)证明:C
 
m
m
+2C
 
m
m+1
+3C
 
m
m+2
+…+nC
 
m
m+n-1
=
(m+1)n+1
m+2
C
 
m+1
m+n
(m,n∈N*).
考点:二项式定理的应用
专题:二项式定理
分析:(1)利用二项式定理中展开式特点,发现g(x)的展开式中x5的系数为
C
5
5
+2
C
5
6
+3
C
5
7
,计算可得;
(2)由(1)可知等式的左边为函数h(x)=(1+x)m+2(1+x)m+1+3(1+x)m+2+…+n(1+x)m+n的展开式的xm的系数,利用错位相减法中午等比数列的求和形式解答.
解答: 解:(1)由已知得g(x)=1(1+x)5+2(1+x)6+3(1+x)7
∴g(x)的展开式中x5的系数为
C
5
5
+2
C
5
6
+3
C
5
7
=76;
(2)由(1)知C
 
m
m
+2C
 
m
m+1
+3C
 
m
m+2
+…+nC
 
m
m+n-1
为函数h(x)=(1+x)m+2(1+x)m+1+3(1+x)m+2+…+n(1+x)m+n的展开式的xm的系数,
又(1+x)h(x)=(1+x)m+1+2(1+x)m+2+3(1+x)m+3+…+n(1+x)m+n+1
 两式相减得-xh(x)=(1+x)m+(1+x)m+1+(1+x)m+2+…+(1+x)m+n+1-n(1+x)m+n
=
(1+x)m[1-(1+x)n]
1-(1+x)
-n(1+x)m+n

∴x2h(x)=(1+x)m-(1+x)m+n+nx(1+x)m+n
∴h(x)展开式中xm的系数等于x2h(x)展开式中xm+2的系数
为-
C
m+2
m+n
+n
C
m+1
m+n
=
(m+1)n+1
m+2
C
m+1
m+n

∴C
 
m
m
+2C
 
m
m+1
+3C
 
m
m+2
+…+nC
 
m
m+n-1
=
(m+1)n+1
m+2
C
 
m+1
m+n
(m,n∈N*).
点评:本题考查了二项式定理的运用以及错位相减法求数列的和的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an},a1=1,an+1=
2an
an+2
(n∈N*),则a5=(  )
A、
1
3
B、
2
5
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设f0(x)=cosx,且对任意的n∈N,都有 fn+1(x)=fn′(x),则f2013(x)=(  )
A、cosxB、sinx
C、-sinxD、-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=(m-1)2x m2-4m+2在(0,+∞)上单调递增,函数g(x)=2x-k.
(Ⅰ)求m的值;
(Ⅱ)当x∈[1,2]时,记f(x),g(x)的值域分别为集合A,B,若A∪B⊆A,求实数K的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c是互不相等的正数,求证:
(Ⅰ)a4+b4+c4>abc(a+b+c);
(Ⅱ)
a2+b2
+
b2+c2
+
c2+a2
2
(a+b+c).

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0,求证:
a+b
2
-
ab
a2+b2
2
-
a+b
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥E-ABCD中,ABCD是矩形,平面EAB⊥平面ABCD,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)求三棱锥D-AEC的体积;
(3)求直线DE与AC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

“a=2”是“直线ax+2y=0与直线x+y=1平行”的
 
条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-mx(m∈R),e为自然对数的底数.
(1)讨论函数f(x)在区间(e,+∞)上的单调性,并求出极值.
(2)若函数f(x)有两个不同的零点x1,x2,求证:x1x2>e2

查看答案和解析>>

同步练习册答案