精英家教网 > 高中数学 > 题目详情
20.在△ABC中,若∠A=60°,a=$\sqrt{13}$,c=4,则b=3或1.

分析 根据余弦定理a2=b2+c2-2bccosA的式子,代入题中的数据得关于b的一元二次方程,解之即可边b的大小.

解答 解:∵∠A=60°,a=$\sqrt{13}$,c=4,
∴由余弦定理可得:a2=b2+c2-2bccosA,即:13=b2+16-2b×4×cos60°,整理可得:b2-4b+3=0,
∴解得:b=3或1,
故答案为:3或1.

点评 本题给出△ABC中的两边和其中一边的对角,求第三边的大小.着重考查了一元二次方程的解法和利用余弦定理解三角形的知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.函数f(x)=log2(x2-1)的单调递减区间为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某超市统计了最近6个月某种鲜牛奶的进价x与售价y的对应数据(单位:元),如下表.
x3528912
y46391214
则$\overline{x}$=6,$\overline{y}$=8.
(1)x12+x22+x32+x42+x52+x62=272;
(2)x1y1+x2y2+x3y3+x4y4+x5y5+x6y6=361;
(3)线性回归方程为y=$\frac{73}{56}$x+$\frac{8}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知α,β均为锐角,且cosα=$\frac{1}{7}$,cos(α+β)=-$\frac{11}{14}$,求cosβ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知在△ABC中,a=4,b=4$\sqrt{2}$,∠A=30°,则∠B=45°或135°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边长,已知a、b、c成等比数列,且a2-c2=ac-bc,△ABC的形状是等边三角形..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知tanα=-$\frac{1}{3}$,α∈($\frac{π}{2}$,π).若β∈($\frac{π}{2}$,π),且cos(α+β)=-$\frac{12}{13}$,求sin(α+β)及cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\frac{mx-1}{\sqrt{m{x}^{2}+4mx+3}}$的定义域为R,则实数m的取值范围是[0,$\frac{3}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图是函数y=f(x)=Asin(ωx+φ)+2(A>0,ω>0,|φ|<π)的图象的一部分,则函数f(x)的解析式为y=sin($\frac{3}{2}$x+$\frac{5π}{4}$)+2.

查看答案和解析>>

同步练习册答案