精英家教网 > 高中数学 > 题目详情
8.已知α,β均为锐角,且cosα=$\frac{1}{7}$,cos(α+β)=-$\frac{11}{14}$,求cosβ.

分析 先利用同角三角函数的基本关系求得sinα和sin(α+β)的值,然后利用cosβ=cos[(α+β)-α],根据两角和公式求得答案.

解答 解:∵α,β均为锐角,cosα=$\frac{1}{7}$,cos(α+β)=-$\frac{11}{14}$,
∴sinα=$\sqrt{1-\frac{1}{49}}$=$\frac{4\sqrt{3}}{7}$,sin(α+β)=$\sqrt{1-(\frac{11}{14})^{2}}$=$\frac{5\sqrt{3}}{14}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-$\frac{11}{14}$+$\frac{4\sqrt{3}}{7}$=$\frac{1}{2}$.即cosβ=$\frac{1}{2}$.

点评 本题主要考查了两角和公式的化简求值和同角三角函数的基本关系的应用.熟练记忆三角函数的基本公式是解题的基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知集合A=(-∞,a+1],集合B=(a-1,+∞),则A∩B=(a-1,a+1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)是定义在(-1,1)上的偶函数,且在(0,1)上单调递增,若f(a-2)-f(4-a2)<0,请确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A=[1,3),B={x|4<2x≤8},C={x|x2-mx+9<0}.
(1)若A∪C=C,求m的取值范围;
(2)若B∩C≠∅,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求边长为a的正三角形的面积关于其边长的变化率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,角A,B,C所对的边分别为a,b,c,20sinA=15sinB=12sinC,若b=2,则△ABC外接圆的半径为(  )
A.1B.$\frac{3}{4}$C.$\frac{5}{4}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,若∠A=60°,a=$\sqrt{13}$,c=4,则b=3或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.从-2,-1,0,3,4,5中任选三个不同元素作为二次函数y=ax2+bx+c的系数,问能组成多少条图象为经过原点且第二象限的抛物线?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若a,b∈[1,3],且a+b=4,y=$\sqrt{a+\frac{1}{a}}$+$\sqrt{b+\frac{1}{b}}$.
(1)令x=ab,求x的取值范围;
(2)用x表示y2

查看答案和解析>>

同步练习册答案