【题目】如图所示,在正方体中,点是棱上的一个动点,平面交棱于点.给出下列命题:
①存在点,使得//平面;
②对于任意的点,平面平面;
③存在点,使得平面;
④对于任意的点,四棱锥的体积均不变.
其中正确命题的序号是______.(写出所有正确命题的序号).
科目:高中数学 来源: 题型:
【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(Ⅰ)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
(Ⅱ)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据某水文观测点的历史统计数据,得到某河流水位X(单位:米)的频率分布直方图如图:将河流水位在以上6段的频率作为相应段的概率,并假设每年河流水位互不影响.
(1)求未来三年,至多有1年河流水位X∈[27,31)的概率(结果用分数表示);
(2)该河流对沿河A企业影响如下:当X∈[23,27)时,不会造成影响;当X∈[27,31)时,损失10000元;当X∈[31,35)时,损失60000元,为减少损失,现有种应对方案: 方案一:防御35米的最高水位,需要工程费用3800元;
方案二:防御不超过31米的水位,需要工程费用2000元;
方案三:不采取措施;
试比较哪种方案较好,并请说理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE= ,A1F= ,CE⊥EF.
(Ⅰ)证明:平面ABB1A1⊥平面ABC;
(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn=﹣ n2+kn(其中k∈N+),且Sn的最大值为8.
(1)确定常数k,求an;
(2)求数列 的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
A.16
B.18
C.25
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com