精英家教网 > 高中数学 > 题目详情
已知对一切实数x,
3x2+2x+2x2+x+1
恒大于正整数k,则这样的k为
 
分析:将分式函数恒成立问题先转化为二次函数的恒成立问题,利用二次函数的函数值恒小于0处理.
解答:解:依题意对?x∈R
3x2+2x+2
x2+x+1
> k
恒成立
∴3x2+2x+2>k(x2+x+1)
∴(k-3)x2+(k-2)x+k-2<0
设函数y=(k-3)x2+(k-2)x+k-2,即y恒小于0
k-3<0
△=(k-2)2-
4(k-3)(k-2)<0

解得 k<2  又k为正整数,
∴k=1
故答案为1.
点评:本题的关键在于“转化”,先将分式函数恒成立转化为二次函数恒成立问题,再利用二次函数性质加以解决,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的一元二次不等式ax2-4x+3>0
(1)当a=1时,求不等式ax2-4x+3>0的解集; 
(2)当a取什么值时,关于x的一元二次不等式ax2-4x+3>0对一切实数x都成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对一切实数x,y均有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0,
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)函数g(x)=xf(x+x)在[0,2]上何处取得极值,最值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
变换T1是逆时针旋转90°的旋转变换,对应的变换矩阵为M1,变换T2对应的变换矩阵是M2=
11
01

(I)求点P(2,1)在T1作用下的点Q的坐标;
(II)求函数y=x2的图象依次在T1,T2变换的作用下所得的曲线方程.
(2)选修4-4:极坐标系与参数方程
从极点O作一直线与直线l:ρcosθ=4相交于M,在OM上取一点P,使得OM•OP=12.
(Ⅰ)求动点P的极坐标方程;
(Ⅱ)设R为l上的任意一点,试求RP的最小值.
(3)选修4-5:不等式选讲
已知f(x)=|6x+a|.
(Ⅰ)若不等式f(x)≥4的解集为{x|x≥
1
2
或x≤-
5
6
}
,求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x-1)>b对一切实数x恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x+3-x,g(x)=
x
2
+log3(1+3-x).
(1)用定义证明:函数g(x)在区间(-∞,0]上为减函数,在区间[0,+∞)上为增函数;
(2)判断函数g(x)的奇偶性,并证明你的结论;
(3)若g(x)≤
1
2
log3f(x)+a对一切实数x恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:新课程高中数学疑难全解 题型:044

已知对一切实数x,不等式|(log3m)2-log3(27m2)|x2-(log3m-3)x-1<0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案