设函数
.
(1)当
时,函数
与
在
处的切线互相垂直,求
的值;
(2)若函数
在定义域内不单调,求
的取值范围;
(3)是否存在正实数
,使得
对任意正实数
恒成立?若存在,求出满足条件的实数
;若不存在,请说明理由.
科目:高中数学 来源:2016-2017学年江西省上饶市高二上学期期末考试文数试卷(解析版) 题型:选择题
甲、乙、丙、丁四位同学各自对
两变量进行线性相关试验,并用回归分析方法分别求得相关系数
如下表:
甲 | 乙 | 丙 | 丁 | |
| 0.82 | 0.78 | 0.69 | 0.85 |
则这四位同学的试验结果能体现出
两变量有更强的线性相关性的是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:高中数学 来源:2017届云南省高三高考适应性月考(五)数学(理)试卷(解析版) 题型:选择题
已知抛物线
的焦点为
,准线为
,抛物线的对称轴与准线交于点
,
为抛物线上的动点,
,当
最小时,点
恰好在以
为焦点的椭圆上,则椭圆的离心率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源:2017届云南省高三高考适应性月考(五)数学(理)试卷(解析版) 题型:选择题
下列说法正确的是( )
A. “
”是“
”的充分不必要条件
B. 命题“
,
”的否定是“
”
C. 命题“若
,则
”的逆命题为真命题
D. 命题“若
,则
或
”为真命题
查看答案和解析>>
科目:高中数学 来源:2016-2017学年山东省烟台市高二上学期期末考试数学(理)试卷(解析版) 题型:解答题
如图所示,在四棱锥
中,底面
为正方形,侧棱
底面
,
,
分别是
的中点.
![]()
(1)求证:
∥平面
;
(2)求直线
与平面
所成角的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com