精英家教网 > 高中数学 > 题目详情
1.在△ABC中,$sinA=\frac{1}{3}$,$cosB=\frac{{\sqrt{3}}}{3}$,a=1,则b=$\sqrt{6}$.

分析 利用同角三角函数基本关系式、正弦定理即可得出.

解答 解:∵$cosB=\frac{{\sqrt{3}}}{3}$,B∈(0,π),∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{6}}{3}$.
由正弦定理可得:$\frac{1}{\frac{1}{3}}$=$\frac{b}{\frac{\sqrt{6}}{3}}$解得b=$\sqrt{6}$.
故答案为:$\sqrt{6}$.

点评 本题考查了正弦定理、同角三角函数基本关系式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知等比数列{an}中,a2=2,a6=8,则a3a4a5=(  )
A.±64B.64C.32D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a,b是实数,则“log2a>log2b”是“($\frac{1}{2}$)a>($\frac{1}{2}$)b”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线mx2-ny2=1(m>0,n>0)的离心率为2,则$\frac{m}{n}$的值为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知y=f(x)是定义在[-6,6]上的奇函数,它在[0,3]上是一次函数,在[3,6]上是二次函数,当x∈[3,6]时,f(x)≤f(5)=3,又f(6)=2,则f(x)=$\left\{\begin{array}{l}{-(x-5)^{2}+3,3≤x≤6}\\{-\frac{1}{3}x,-3<x<3}\\{(x+5)^{2}-3,-6≤x≤-3}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{{\sqrt{3}c-2b}}{{\sqrt{3}a}}=\frac{{sin(\frac{π}{2}-C)}}{cos(π-A)}$,则角A等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.根据历年气象统计资料知,某地区某日吹东风的概率为$\frac{1}{3}$,下雨的概率为$\frac{2}{5}$,既吹东风又下雨的概率为$\frac{1}{5}$.现已知该日吹东风,则该日下雨的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a,b分别是先后抛掷一枚质地均匀的骰子得到的点数,则事件“方程x2+ax+b=0有两个不等实根”的概率是(  )
A.$\frac{19}{36}$B.$\frac{17}{36}$C.$\frac{1}{2}$D.$\frac{15}{36}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知复数x+(y-2)i,(x,y∈R)的模为$\sqrt{3}$,则$\frac{y}{x}$的取值范围是(  )
A.[-$\frac{{\sqrt{3}}}{3}$,$\frac{{\sqrt{3}}}{3}$]B.(-∞,-$\frac{{\sqrt{3}}}{3}$]∪[$\frac{{\sqrt{3}}}{3}$,+∞)C.[-$\sqrt{3}$,$\sqrt{3}$]D.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)

查看答案和解析>>

同步练习册答案