| A. | $\frac{19}{36}$ | B. | $\frac{17}{36}$ | C. | $\frac{1}{2}$ | D. | $\frac{15}{36}$ |
分析 先求出基本事件总数n=6×6,由事件“方程x2+ax+b=0有两个不等实根”,得△=a2-4b>0,利用列举法求出其包含的基本事件个数,由此能求出事件“方程x2+ax+b=0有两个不等实根”的概率.
解答 解:∵a,b分别是先后抛掷一枚质地均匀的骰子得到的点数,
∴基本事件总数n=6×6=36,
∵事件“方程x2+ax+b=0有两个不等实根”,
∴△=a2-4b>0,其包含的基本事件有:
(3,1),(4,1),(5,1),(6,1),(3,2),(4,2),(5,2),(6,2),(4,3),(5,3),(6,3),(5,4),(6,4),(5,5),(6,5),(5,6),(6,6),共有m=17个,
∴事件“方程x2+ax+b=0有两个不等实根”的概率:
p=$\frac{m}{n}$=$\frac{17}{36}$.
故选:B.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{10}$ | B. | $\frac{3}{10}$ | C. | $\frac{3}{5}$ | D. | $\frac{7}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 共线向量的方向相同 | B. | 零向量是$\overrightarrow{0}$ | ||
| C. | 长度相等的向量叫做相等向量 | D. | 共线向量是在一条直线上的向量 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 钝角三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{\sqrt{3}}{2}$]∪[$\frac{\sqrt{3}}{2}$,+∞) | B. | [-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$] | C. | (-∞,-$\frac{\sqrt{3}}{2}$]∪($\frac{\sqrt{3}}{2}$,+∞) | D. | (-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com