精英家教网 > 高中数学 > 题目详情
20.曲线y=$\frac{{e}^{x}}{{e}^{x}+1}$的切线斜率最大时切线方程是(  )
A.x-4y-2=0B.x+4y+2=0C.x-4y+2=0D.x+4y-2=0

分析 求出函数的导数,求得切线的斜率,运用基本不等式求得最大值,及切点,再由斜截式方程,即可得到切线方程.

解答 解:y=$\frac{{e}^{x}}{{e}^{x}+1}$的导数为y′=$\frac{{e}^{x}}{({e}^{x}+1)^{2}}$
=$\frac{1}{{e}^{x}+{e}^{-x}+2}$≤$\frac{1}{2\sqrt{{e}^{x}•{e}^{-x}}+2}$=$\frac{1}{4}$.
当且仅当x=0时,取得最大值$\frac{1}{4}$,
即有切线斜率最大值为$\frac{1}{4}$,切点为(0,$\frac{1}{2}$),
则切线的方程为y=$\frac{1}{4}$x+$\frac{1}{2}$,
即为x-4y+2=0.
故选:C.

点评 本题考查导数的运用:求切线的方程,同时考查基本不等式的运用:求最值,正确求导和运用斜截式方程是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.求下列曲线的极坐标方程.
(1)经过点A(3,$\frac{π}{3}$),平行于极轴的直线;
(2)经过点B(-2,$\frac{π}{4}$),垂直于极轴的直线;
(3)圆心在点A(5,π),半径等于5的圆;
(4)经过点C(a,0),与极轴相交成α角的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}.
(1)若B⊆A,求a的值;
(2)若A⊆B,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出下列关于互不相同的直线m,n,l和平面α,β的四个命题:
(1)m?α,l∩α=A,点A∉m,则l与m不共面;
(2)l、m是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;
(3)若l∥α,m∥β,α∥β,则l∥m;
(4)若l?α,m?α,l∩m=点A,l∥β,m∥β,则α∥β,
其中为错误的命题是(  )个.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若f(x)=(a-2)x2+(a-1)x+3是偶函数,则函数f(x)的增区间是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在集合A={m|关于x的方程x2+mx+$\frac{3}{4}$m+1=0无实根}中随机的取一元素x,恰使lgx有意义的概率为$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.3名男生与3名女生站在一排,如果要求男女生相间站,那么站法有(  )
A.36种B.72种C.108种D.144种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若f(2x+1)=x,求f(x)、f(x2+1)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数f(x)=|x+1|-2|x-a|(a>0)的图象与x轴围成的三角形的面积大于6,求a的取值范围.

查看答案和解析>>

同步练习册答案