精英家教网 > 高中数学 > 题目详情

若a,b,c是△ABC中A,B,C的对边,A、B、C成等差数列,a,b,c成等比数列,试判断△ABC的形状.

解:△ABC中,∵A、B、C成等差数列,可得2B=A+C. 再由A+B+C=180°可得,B=60°,A+C=120°.
由a,b,c成等比数列可得b2=ac,由正弦定理可得sin2B=sinAsinC,
=sinAsin(120°-A)=sinAcosA+sin2A=sin2A-+
整理可得,sin(2A-30°)=1,故有 A=60°,
∴B=C=60°,故△ABC是等边三角形.
分析:由已知角A,B,C成等差数列可求B=60°,A+C=120°,再由a,b,c成等比数列可得b2=ac,结合正弦定理可得sin2B=sinAsinC,利用二倍角及辅助角公式整理可得sin(2A-30°)=1,
故有 A=60°,故B=C=60°,从而得到△ABC是等边三角形.
点评:解三角形的常见类型是结合正弦定理、余弦定理,三角形的内角和、大边对大角等知识综合应用,而二倍角公式及辅助角公式是经常用到的公式,要注意掌握,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若a,b,c是不全相等的实数,求证:a2+b2+c2>ab+bc+ca.

查看答案和解析>>

科目:高中数学 来源: 题型:

若A,B,C是上不共线的三点,动点P满足
OP
=
1
3
[(1-t)
OA
+(1-t)
OB
+(1+2t)
OC
]
(t∈R且t≠0),则点P的轨迹一定通过△ABC的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是空间任意三个向量,λ∈R,下列关系式中,不成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①若p、q为两个命题,则“p且q为真”是“p或q为真”的必要不充分条件;
②若p为:?x∈R,x2+2x+2≤0,则¬p为:?x∈R,x2+2x+2>0;
③若椭圆
x2
16
+
y2
2
=1的两焦点为F1,F2,且弦AB过F1点,则△ABF2的周长为20;
④若a、b、c是常数,则“a>0且b2-4ac<0”是“对任意x∈R,有ax2+bx+c>0”的充要条件.
在上述命题中,正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点,对称轴为坐标轴的椭圆与直线x+y=3相交于A、B两点,C是AB的中点,若|AB|=2,O是坐标原点,OC的斜率为2,求椭圆的方程.

查看答案和解析>>

同步练习册答案