精英家教网 > 高中数学 > 题目详情
已知正项函数{an}满足a1=1,an+12=an(an+4)+4,n∈N*,数列{bn}满足b1=1,bn+1=-
1
bn+1
,n∈N*
(1)求{an}的通项公式;
(2)证明:存在正整数k,使得对一切n∈N*有bn+k=bn
(3)求数列{anbn}的前3n项和S3n
考点:数列的求和,数列递推式
专题:计算题,等差数列与等比数列
分析:(1)由an+12=an(an+4)+4,可得(an+1+an+2)(an+1-an-2)=0,再由an>0,得an+1-an=2,从而可知数列{an}为等差数列,易求an
(2)该问题即求数列的周期,由bn+1=-
1
bn+1
可推得bn+3=bn
(3)由(2)知当k∈N*时,b3k-2=b1=1,b3k-1=b2=-
1
2
,b3k=b3=-2,从而有a3k-2b3k-2+a3k-1b3k-1+a3kb3k=[2(3k-2)-1]×1+[2(3k-1)-1]×(-
1
2
)+(2×3k-1)×(-2)=-9k-
3
2
,据此可得数列{anbn}的前3n项和S3n=(a1b1+a2b2+a3b3)+(a4b4+a5b5+a6b6)+…+(a3n-2b3n-2+a3n-1b3n-1+a3nb3n),代入数值可求;
解答: 解:(1)由an+12=an(an+4)+4,得an+12=(an+2)2
∴(an+1+an+2)(an+1-an-2)=0,
由an>0,得an+1-an=2,
∴数列{an}为等差数列,且公差为2,
∴{an}的通项公式为an=2n-1.
(2)bn+2=-
1
bn+1+1
=-
1
-
1
bn+1
+1
=-
bn+1
bn

bn+3=-
1
bn+2+1
=-
1
-
bn+1
bn
+1
=bn
∴当k=3时,对一切n∈N*有bn+k=bn
(3)b2=-
1
b1+1
=-
1
2
b3=-
1
b2+1
=-2,
由(2)知当k∈N*时,b3k-2=b1=1,b3k-1=b2=-
1
2
,b3k=b3=-2,
∴a3k-2b3k-2+a3k-1b3k-1+a3kb3k
=[2(3k-2)-1]×1+[2(3k-1)-1]×(-
1
2
)+(2×3k-1)×(-2)=-9k-
3
2

∴数列{anbn}的前3n项和
S3n=(a1b1+a2b2+a3b3)+(a4b4+a5b5+a6b6)+…+(a3n-2b3n-2+a3n-1b3n-1+a3nb3n
=-9(1+2+…+9)-
3
2
n
=-
9
2
n2-6n
点评:本题考查由数列递推式求数列通项、数列求和及数列的性质等知识,考查学生运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1-2i
2+i
等于(  )
A、-i
B、-
3
5
i
C、
4+3i
5
D、
4-3i
5

查看答案和解析>>

科目:高中数学 来源: 题型:

若p:x2-4x+3>0;q:x2<1,则p是q的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=2sin(2x+
π
4
),
(1)用五点作图法做出该函数在一个周期内的闭区间上的简图;
(2)该函数是由函数y=sinx经过怎样的变换得到的?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an+1=Sn-n+3,n∈N*,a1=2.
(Ⅰ)求证:当n≥2,n∈N*时,{an-1}是等比数列;
(Ⅱ)求{an}的通项公式;
(Ⅲ)利用错位相减法求出Tn,即可证明不等式
1
3
≤Tn
4
3
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn+an=1,数列{bn}满足bn+log2an=0,
(1)求数列{an}的通项公式;
(2)求数列{
1
bnbn+1
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-1.对任意x∈[
3
2
,+∞),f(
x
sinθ
)-(4sin2θ)f(x)≤f(x-1)+4f(sinθ),恒成立,若θ∈(0,π),求θ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O的弦CD与直径AB垂直并交于点F,点E在CD上,且AE=CE.
(1)求证:CA2=CE•CD;
(2)已知CD=5,AE=3,求sin∠EAF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,AA1=2,E为AA1的中点,O为BD1的中点.
(Ⅰ)求证:平面A1BD1⊥平面ABB1A1
(Ⅱ)求证:EO∥平面ABCD;
(Ⅲ)设P为正方体ABCD-A1B1C1D1棱上一点,给出满足条件OP=
2
的点P的个数,并说明理由.

查看答案和解析>>

同步练习册答案