精英家教网 > 高中数学 > 题目详情
19.如图所示,AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,F为CD的中点.
求证:
(Ⅰ)AF∥平面BCE;
(Ⅱ)平面BCE⊥平面CDE.

分析 (Ⅰ)取CE的中点G,连结FG、BG.由已知条件推导出四边形GFAB为平行四边形,由此能证明AF∥平面BCE.
(Ⅱ)由等边三角形性质得AF⊥CD,由线面垂直得DE⊥AF,从而AF⊥平面CDE,由平行线性质得BG⊥平面CDE,由此能证明平面BCE⊥平面CDE

解答 证明:(Ⅰ)取CE的中点G,连FG、BG.
∵F为CD的中点
∴GF∥DE且GF=$\frac{1}{2}$DE.
∵AB⊥平面ACD,DE⊥平面ACD,
∴AB∥DE,∴GF∥AB.
又AB=$\frac{1}{2}$DE,∴GF=AB.
∴四边形GFAB为平行四边形,则AF∥BG.
∵AF?平面BCE,BG?平面BCE,
∴AF∥平面BCE.
(Ⅱ)∵△ACD为等边三角形,F为CD的中点,
∴AF⊥CD.
∵DE⊥平面ACD,AF?平面ACD,
∴DE⊥AF.
又CD∩DE=D,故AF⊥平面CDE.
∵BG∥AF,
∴BG⊥平面CDE.
∵BG?平面BCE,
∴平面BCE⊥平面CDE.

点评 本题考查直线与平面平行的证明,考查平面与平面垂直的证明,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.若向量$\overrightarrow{a}$=(1,λ,2),$\overrightarrow{b}$=(-2,1,1),$\overrightarrow{a}$,$\overrightarrow{b}$夹角的余弦值为$\frac{1}{6}$,求λ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{3}$,短轴长为$2\sqrt{2}$,过右焦点F的直线l与C相交于A,B两点.O为坐标原点.
(1)求椭圆C的方程;
(2)若点P在椭圆C上,且$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)对任意x∈(0,+∞),满足f($\frac{1}{x}$)=$\frac{2}{x}$-log2x-3
(Ⅰ)求f(x)的解析式;
(Ⅱ)判断并证明f(x)在定义域上的单调性;
(Ⅲ)证明函数f(x)在区间(1,2)内有唯一零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,a1=3,(n+1)an-nan+1=1,n∈N*
(Ⅰ)证明:数列{an}是等差数列,并求{an}的通项公式;
(Ⅱ)设数列{bn}的通项bn=$\frac{4}{{(a}_{n}-1){(a}_{n+1}-1)}$,记数列{bn}的前n项和为Tn,若对n∈N*,Tn≤k(n+4)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列极限:
(1)$\underset{lim}{x→1}$(2x2-3x+1);     
(2)$\underset{lim}{x→2}$$\frac{2x-1}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,AB=3,AC=4,N是AB的中点,M是边AC(含端点)上的动点.
(1)若∠BAC=60°,求|$\overrightarrow{BC}$|的值;
(2)若$\overrightarrow{BM}$⊥$\overrightarrow{CN}$,求cosA的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若直线2x+y+4=0与ax+2y-2=0平行,则这两条平行线间的距离为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a=30.5,b=log32,c=cos$\frac{2π}{3}$,则(  )
A.a<b<cB.c<a<bC.b<c<aD.c<b<a

查看答案和解析>>

同步练习册答案