精英家教网 > 高中数学 > 题目详情
4.求下列极限:
(1)$\underset{lim}{x→1}$(2x2-3x+1);     
(2)$\underset{lim}{x→2}$$\frac{2x-1}{x+1}$.

分析 (1)$\underset{lim}{x→1}$(2x2-3x+1)=2-3+1;
(2)$\underset{lim}{x→2}$$\frac{2x-1}{x+1}$=$\frac{2×2-1}{2+1}$,化简即可.

解答 解:(1)$\underset{lim}{x→1}$(2x2-3x+1)=2-3+1=0;
(2)$\underset{lim}{x→2}$$\frac{2x-1}{x+1}$=$\frac{2×2-1}{2+1}$=1.

点评 本题考查了极限的化简与运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知在正三陵拄A1B1C1-ABC(侧棱垂直于底面,且底面是正三角形)中,D、E分别是棱BC、CC1的中点,AB=AA1=2.
(1)证明:BE⊥AB1
(2)求二面角B-AB1-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.高二数学ICTS竞赛初赛考试后,某校对95分以上的成绩进行统计,其频率分布直方图如图所示.
(1)求这组数据的平均数M;
(2)从所有95分以上的考生成绩中,又放回的抽取4次,记这4次成绩位于(95,105]之间的个数为X,求X的分布列和数学期望.(以直方图中的频率作为概率)(分布列结果不用化简)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知bsinA=3asinC,cosA=$\frac{2}{3}$,
(Ⅰ)若b=3,求a的值;
(Ⅱ)若△ABC的面积S=$\sqrt{5}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,F为CD的中点.
求证:
(Ⅰ)AF∥平面BCE;
(Ⅱ)平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设α为锐角,且cos(α+$\frac{π}{6}$)=$\frac{3\sqrt{10}}{10}$,tan(α+β)=$\frac{2}{5}$.
(1)求sin(2α+$\frac{π}{6}$)的值;
(2)求tan(2β-$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“x=1”是“x2+2x-3=0”的(  )
A.充要条件B.充分而不必要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=mx2-2mx+n(m>0)在区间[1,3]上的最大值为5,最小值为1,设$g(x)=\frac{f(x)}{x}$.
(Ⅰ)求m、n的值;
(Ⅱ)证明:函数g(x)在[$\sqrt{n}$,+∞)上是增函数;
(Ⅲ)若函数F(x)=g(2x)-k•2x在x∈[-1,1]上有零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算下列定积分:
(1)${∫}_{0}^{5}4xdx$;
(2)${∫}_{0}^{5}({x}^{2}-2x)$dx;
 (3)${∫}_{1}^{2}$($\sqrt{x}$-1)dx;
(4)${∫}_{-1}^{3}$(3x2-2x+1)dx;
(5)${∫}_{1}^{2}$(x-$\frac{1}{x}$)dx;
(6)${∫}_{1}^{2}$$\frac{1}{{x}^{2}}$dx;
(7)${∫}_{0}^{π}$cosxdx;
(8)${∫}_{-π}^{0}$sinxdx.

查看答案和解析>>

同步练习册答案