精英家教网 > 高中数学 > 题目详情
10.函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示,则f($\frac{10π}{3}$)的值为(  )
A.-1B.0C.1D.2

分析 由函数f(x)的部分图象求出A、B的值,
再根据x=$\frac{2π}{3}$时f(x)取得最大值,x=2π时f(x)=0,
列出方程组求出ω、φ的值,写出f(x)的解析式,再计算f($\frac{10π}{3}$).

解答 解:由函数f(x)=Asin(ωx+φ)+B的部分图象知,
2A=3-(-1)=4,解得A=2,
∴B=$\frac{3-1}{2}$=1;
又x=$\frac{2π}{3}$时,f(x)取得最大值3,
∴$\frac{2π}{3}$ω+φ=$\frac{π}{2}$①;
x=2π时,f(x)=0,
∴2πω+φ=$\frac{7π}{6}$②;
由①②组成方程组,
解得ω=$\frac{1}{2}$,φ=$\frac{π}{6}$;
∴f(x)=2sin($\frac{1}{2}$x+$\frac{π}{6}$)+1,
∴f($\frac{10π}{3}$)=2sin($\frac{1}{2}$×$\frac{10π}{3}$+$\frac{π}{6}$)+1=2×(-$\frac{1}{2}$)+1=0.
故选:B.

点评 本题考查了函数f(x)=Asin(ωx+φ)+B的图象与性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.不等式(x2-4)(x-6)2≤0的解集是{x|-2≤x≤2或者x=6}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=m(x-2m)(x+m+3),$g(x)={2^x}-\frac{1}{2}$,若对任意的x∈R,都有f(x)<0或g(x)<0,则实数m的取值范围是(-2,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=x3-ax2+1在区间(0,1)内单调递减,则实数a的取值范围是[$\frac{3}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=$\frac{{e}^{x}}{x}$,若方程f2(x)+2a2=3a|f(x)|有且仅有4个不等实根,则实数a的取值范围为(  )
A.(0,$\frac{e}{2}$)B.($\frac{e}{2}$,e)C.(0,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知动点P到直线l1:x=-2的距离与到点F(-1,0)的距离之比为 $\sqrt{2}$.
(1)求动点P的轨迹Γ;
(2)直线l与曲线Γ交于不同的两点A,B(A,B在x轴的上方)∠OFA+∠OFB=180°:
①当A为椭圆与y轴的正半轴的交点时,求直线l的方程;
②对于动直线l,是否存在一个定点,无论∠OFA如何变化,直线l总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.集合A={-2,-1,0,1,2},B={-1,2,3},则A∪B=(  )
A.{-2,-1,0,1,2}B.{-1,2,3}C.{-2,-1,0,1,2,3}D.{-1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四边形ABCD是体积为8$\sqrt{3}$π的圆柱OQ的轴截面,点P在底面圆周上,BP=OA=2,G是DP的中点.
(1)求证:AG⊥平面DPB;
(2)求二面角P-AG-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知△ABC的三边长为a,b,c,满足直线ax+by+2c=0与圆x2+y2=4相离,则△ABC是(  )
A.直角三角形B.锐角三角形
C.钝角三角形D.以上情况都有可能

查看答案和解析>>

同步练习册答案