精英家教网 > 高中数学 > 题目详情
(1)已知a,b∈R,求证:a2+b2≥ab+a+b-1.
(2)已知|a|<1,|b|<1,求证:|1-ab|>|a-b|.
考点:不等式的证明
专题:证明题,不等式的解法及应用
分析:(1)欲证明a2+b2≥ab+a+b-1,利用比较法,只须证明 (a2+b2)-(ab+a+b-1)>0即可,故先作差后因式分解后与0比较即可;
(2)首先化简|1-ab|2-|a-b|2可得,|1-ab|2-|a-b|2=1+a2b2-a2-b2=(a2-1)(b2-1);结合题意中|a|<1,|b|<1,可得a、b的范围,进而可得|1-ab|2-|a-b|2>0,由不等式的性质,可得答案.
解答: 证明:(1)(a2+b2)-(ab+a+b-1)
=
1
2
(2a2+2b2-2ab-2a-2b+2)
=
1
2
[(a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)]
=
1
2
[(a-b)2+(a-1)2+(b-1)2]≥0,
则a2+b2≥ab+a+b-1;
(2)|1-ab|2-|a-b|2=1+a2b2-a2-b2=(a2-1)(b2-1).
由于|a|<1,|b|<1,则a2-1<0,b2-1<0.
则|1-ab|2-|a-b|2>0,
故有|1-ab|>|a-b|.
点评:本题考查不等式的证明,考查比较法的运用以及不等式性质的基本运用,注意结合题意,进行绝对值的转化,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在一座底部不可到达的孤山两侧,有两段平行的公路AB和CD,现测得AB=5,AC=9∠BCA=30°,∠ADB=45°
(1)求sin∠ABC
(2)求BD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=-
1
2
x2
+bx+1在[-1,+∞)上是减函数,则b的取值范围是(  )
A、[-1,+∞)
B、(-1,+∞)
C、(-∞,-1)
D、(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
a
+
1
x
(a>0,x>0),则f(x)在[
1
2
,2]上的最大值为
 
,最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
3
x3+x函数,则不等式f(2-x2)+f(2x+1)>0的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且a1=1,Sn=nan-2n(n-1).
(Ⅰ)求a2,a3,a4,并求出数列{an}的通项公式;
(Ⅱ)设数列{
1
anan+1
}的前n项和为Tn,求证:Tn
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个函数中,在(0,+∞)上为增函数的是(  )
A、f(x)=3-x
B、f(x)=x2-3x
C、f(x)=2x
D、f(x)=
1
x

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
11-2
30
+
7-2
10
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A′B′C′D′的棱线长为1,线段AC′上有两个动点E,F,且EF=
2
2
,则下列结论中正确的是(  )
①直线AA′与CF是异面直线
②三棱锥B′BEF体积为定值
③异面直线DD′与BE所成角的余弦值范围是[
2
2
6
3
]

④BD⊥EF.
A、①②④B、②④
C、②③D、②③④

查看答案和解析>>

同步练习册答案