分析 $\frac{{a}_{n+1}}{{S}_{n+1}}$=Sn,可得$\frac{{S}_{n+1}-{S}_{n}}{{S}_{n+1}}$=Sn,$\frac{1}{{S}_{n+1}}$-$\frac{1}{{S}_{n}}$=-1,利用等差数列的通项公式即可得出.
解答 解:∵$\frac{{a}_{n+1}}{{S}_{n+1}}$=Sn,∴$\frac{{S}_{n+1}-{S}_{n}}{{S}_{n+1}}$=Sn,化为:$\frac{1}{{S}_{n+1}}$-$\frac{1}{{S}_{n}}$=-1,
∴数列$\{\frac{1}{{S}_{n}}\}$是等差数列,首项为-1,公差为-1.
∴$\frac{1}{{S}_{n}}$=-1-(n-1)=-n,
∴Sn=-$\frac{1}{n}$.
故答案为:$-\frac{1}{n}$.
点评 本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -1 | C. | -$\frac{3}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=tan(2x+$\frac{π}{6}$) | B. | y=tan(x-$\frac{π}{6}$) | C. | y=tan(2x-$\frac{π}{6}$) | D. | y=tan2x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3升 | B. | $\frac{31}{6}$升 | C. | 4升 | D. | $\frac{32}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 0 | C. | $\frac{13}{6}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $\frac{3}{5}$ | C. | $\frac{5}{4}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com