精英家教网 > 高中数学 > 题目详情
12.设Sn是数列{an}的前n项和,且${a_1}=-1,\frac{{{a_{n+1}}}}{{{S_{n+1}}}}={S_n}$,则Sn=$-\frac{1}{n}$.

分析 $\frac{{a}_{n+1}}{{S}_{n+1}}$=Sn,可得$\frac{{S}_{n+1}-{S}_{n}}{{S}_{n+1}}$=Sn,$\frac{1}{{S}_{n+1}}$-$\frac{1}{{S}_{n}}$=-1,利用等差数列的通项公式即可得出.

解答 解:∵$\frac{{a}_{n+1}}{{S}_{n+1}}$=Sn,∴$\frac{{S}_{n+1}-{S}_{n}}{{S}_{n+1}}$=Sn,化为:$\frac{1}{{S}_{n+1}}$-$\frac{1}{{S}_{n}}$=-1,
∴数列$\{\frac{1}{{S}_{n}}\}$是等差数列,首项为-1,公差为-1.
∴$\frac{1}{{S}_{n}}$=-1-(n-1)=-n,
∴Sn=-$\frac{1}{n}$.
故答案为:$-\frac{1}{n}$.

点评 本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.对于实数m>-3,若函数$y={(\frac{1}{2})^x}$图象上存在点(x,y)满足约束条件$\left\{\begin{array}{l}x-y+3≥0\\ x+2y+3≥0\\ x≤m\end{array}\right.$,则实数m 的最小值为(  )
A.$\frac{1}{2}$B.-1C.-$\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设x,y满足约束条件$\left\{\begin{array}{l}{x≥y}\\{y≥4x-3}\\{x≥0,y≥0}\end{array}\right.$,若目标函数2z=2x+ny(n>0),z的最大值为2,则y=tan(nx+$\frac{π}{6}$)的图象向右平移$\frac{π}{6}$后的表达式为(  )
A.y=tan(2x+$\frac{π}{6}$)B.y=tan(x-$\frac{π}{6}$)C.y=tan(2x-$\frac{π}{6}$)D.y=tan2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在边长为1的正方形ABCD中,$2\overrightarrow{AE}=\overrightarrow{EB}$,BC的中点为F,$\overrightarrow{EF}=2\overrightarrow{FG}$,则$\overrightarrow{EG}•\overrightarrow{BD}$=$-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.《九章算术》中“竹九节”问题:现有一根9节的竹子,自上而下各节的容积称等比数列,上面3节的容积共2升,下面3节的容积共128升,则第5节的容积为(  )
A.3升B.$\frac{31}{6}$升C.4升D.$\frac{32}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(-2,3),$\overrightarrow{b}$=(1,m-$\frac{3}{2}$),$\overrightarrow{a}$∥$\overrightarrow{b}$,则m=(  )
A.3B.0C.$\frac{13}{6}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知圆$ρ=4sin({θ+\frac{π}{6}})$被射线θ=θ0(ρ≥0,θ0为常数,且${θ_0}∈({0,\frac{π}{2}})$)所截得的弦长为2$\sqrt{3}$,求θ0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{{a{x^2}+bx}}{e^x}$,(e为自然对数的底数,a,b∈R),若f(x)在x=0处取得极值,且x-ey=0是曲线y=f(x)的切线.
(1)求a,b的值;
(2)用min{m,n}表示m,n中的最小值,设函数$g(x)=min\left\{{f(x),x-\frac{1}{x}}\right\}(x>0)$,若函数h(x)=g(x)-cx2为增函数,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线l:4x-5y=20经过双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一个焦点和虚轴的一个端点,则C的离心率为(  )
A.$\frac{5}{3}$B.$\frac{3}{5}$C.$\frac{5}{4}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案