分析 由已知可得圆的标准方程为:$(x-1)^{2}+(y-\sqrt{3})^{2}=4$,射线直角坐标方程可以设为y=kx,根据射线被圆所截得的弦长为2$\sqrt{3}$,可得k值,进而得到θ0的值.
解答 解:圆$ρ=4sin({θ+\frac{π}{6}})$即$ρ=2\sqrt{3}sinθ+2cosθ$,即${ρ}^{2}=2\sqrt{3}ρsinθ+2ρcosθ$
的直角坐标方程为:${x}^{2}+{y}^{2}=2\sqrt{3}y+2x$,
即$(x-1)^{2}+(y-\sqrt{3})^{2}=4$,
射线θ=θ0,(θ0为常数,且${θ_0}∈({0,\frac{π}{2}})$)的直角坐标方程可以设为y=kx(x≥0,k>0),
则圆心到直线的距离d=$\frac{|k-\sqrt{3}|}{\sqrt{1+{k}^{2}}}$
根据题意得:2$\sqrt{4-(\frac{|k-\sqrt{3}|}{\sqrt{1+{k}^{2}}})^{2}}$=2$\sqrt{3}$,
解得:k=$\frac{\sqrt{3}}{3}$,
即tanθ0=$\frac{\sqrt{3}}{3}$,${θ_0}∈({0,\frac{π}{2}})$
故θ0=$\frac{π}{6}$.
点评 本题考查了极坐标与直角坐标方程的互化、参数方程化为普通方程、点到直线的距离公式公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,2] | B. | (-1,2) | C. | [-1,2] | D. | [0,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (1,+∞) | C. | (-∞,0)∪(1,+∞) | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $3\sqrt{2}$ | B. | 4 | C. | $\sqrt{34}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | -8 | C. | ±8 | D. | $±\frac{9}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com