精英家教网 > 高中数学 > 题目详情
12.抛物线x2=4y上一点A的纵坐标为4,则点A与抛物线焦点的距离为(  )
A.5B.4C.$\sqrt{15}$D.$\sqrt{10}$

分析 求出A的横坐标,然后利用抛物线的性质求解即可.

解答 解:抛物线x2=4y上一点A的纵坐标为4,则A的横坐标为:4,
可得点A与抛物线焦点的距离为:4+1=5.
故选:A.

点评 本题考查抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设x,y满足约束条件$\left\{\begin{array}{l}{x≥y}\\{y≥4x-3}\\{x≥0,y≥0}\end{array}\right.$,若目标函数2z=2x+ny(n>0),z的最大值为2,则y=tan(nx+$\frac{π}{6}$)的图象向右平移$\frac{π}{6}$后的表达式为(  )
A.y=tan(2x+$\frac{π}{6}$)B.y=tan(x-$\frac{π}{6}$)C.y=tan(2x-$\frac{π}{6}$)D.y=tan2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系.已知圆$ρ=4sin({θ+\frac{π}{6}})$被射线θ=θ0(ρ≥0,θ0为常数,且${θ_0}∈({0,\frac{π}{2}})$)所截得的弦长为2$\sqrt{3}$,求θ0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\frac{{a{x^2}+bx}}{e^x}$,(e为自然对数的底数,a,b∈R),若f(x)在x=0处取得极值,且x-ey=0是曲线y=f(x)的切线.
(1)求a,b的值;
(2)用min{m,n}表示m,n中的最小值,设函数$g(x)=min\left\{{f(x),x-\frac{1}{x}}\right\}(x>0)$,若函数h(x)=g(x)-cx2为增函数,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.E为正四面体D-ABC棱AD的中点,平面α过点A,且α∥平面ECB,α∩平面ABC=m,α∩平面ACD=n,则m、n所成角的余弦值为(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=(x+b)lnx,已知曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直.
(Ⅰ) 求b的值.
(Ⅱ) 若函数$g(x)={e^x}(\frac{f(x)}{x+1}-a)(a≠0)$,且g(x)在区间(0,+∞)上是单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,在正四棱柱ABCD-A1B1C1D1中,AB=3cm,AA1=1cm,则三棱锥D1-A1BD的体积为$\frac{3}{2}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线l:4x-5y=20经过双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一个焦点和虚轴的一个端点,则C的离心率为(  )
A.$\frac{5}{3}$B.$\frac{3}{5}$C.$\frac{5}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.《九章算术》是我国古代数学名著,也是古代东方数学的代表作.书中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为8步和15步,问其内切圆的直径为多少步?”现若向此三角形内投豆子,则落在其内切圆内的概率是(  )
A.$\frac{3π}{10}$B.$\frac{π}{20}$C.$\frac{3π}{20}$D.$\frac{π}{10}$

查看答案和解析>>

同步练习册答案