精英家教网 > 高中数学 > 题目详情

,其中>0,记函数fx)=2·fx)图象中相邻两条对称轴间的距离为
(1)求的值;
(2)求fx)的单调减区间和fx)的最大值及取得最大值时x的取值集合.

(1)
(2) ∴fx)的单调减区间为
当2xx=fmaxx)= 3
fx)的最大值为3及取得最大值时x的取值集合为

解析试题分析:、解:
=  
fx)=2·=2

                  4分
(1)由题意可知,∴           6分
(2)由(1)得fx)=2sin(2x)+1

fx)的单调减区间为       8分
当2xx=fmaxx)= 3
fx)的最大值为3及取得最大值时x的取值集合为 12分
考点:三角函数的性质
点评:解决的关键是将函数化为单一三角函数,借助于函数的性质来求解得到单调性和最值,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量=(cosx,sinx), ,且x∈[0,].
(1)求
(2)设函数=+,求函数的最值及相应的的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在R上的函数f(x)=的周期为
且对一切xR,都有f(x)
(1)求函数f(x)的表达式; 
(2)若g(x)=f(),求函数g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为偶函数,且其图象上相邻两对称轴之间的距离为.
(1)求函数的表达式;(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)求值:
(2)已知的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(8分)已知函数.
(1)写出它的振幅、周期、频率和初相;
(2)求这个函数的单调递减区间;
(3)求出使这个函数取得最大值时,自变量的取值集合,并写出最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数

(1)求函数的最小正周期和单调增区间;
(2)作出函数在一个周期内的图象。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数(其中A>0,>0,的部分图象如图所示,求这个函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知向量:,函数,若相邻两对称轴间的距离为
(Ⅰ)求的值,并求的最大值及相应x的集合;
(Ⅱ)在△ABC中,分别是A,B,C所对的边,△ABC的面积,求边的长。

查看答案和解析>>

同步练习册答案