精英家教网 > 高中数学 > 题目详情
6.双曲线x2-4y2=4的两个焦点F1、F2,P是双曲线上的一点,满足PF1⊥PF2,则△F1PF2的面积为(  )
A.1B.$\frac{\sqrt{5}}{2}$C.2D.$\sqrt{5}$

分析 根据所给的双曲线的方程,写出双曲线的实轴长和焦距,设PF1=m,PF2=n,根据双曲线的定义和勾股定理求得mn,由三角形的面积公式S=$\frac{1}{2}$mn,求得△F1PF2的面积.

解答 解:∵双曲线x2-4y2=4,
∴双曲线的标准方程:$\frac{{x}^{2}}{4}-{y}^{2}=1$,
∴a=2,b=1,c=$\sqrt{5}$,
设PF1=m,PF2=n,
由双曲线的定义可知:丨m-n丨=4   ①,
∵PF1⊥PF2
由勾股定理可知:m2+n2=(2$\sqrt{5}$)2,②
把①平方,然后代入②,求得mn=2,
∴△F1PF2的面积为S=$\frac{1}{2}$mn=1,
故选:A.

点评 本题考查双曲线的定义及性质,考查根据勾股定理,双曲线的定义及三角形面积公式的应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知直线$l\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t-1\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ-2cosθ,若直线l与曲线C相交与A、B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过抛物线y2=4x焦点的弦的中点的横坐标为4,则该弦长为18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数$z=\frac{4+bi}{1-i}({b∈R})$的实部为-1,则复数z-b在复平面上对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知菱形ABCD的边长为2,∠BAD=120°,$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,$\overrightarrow{DF}=\frac{1}{3}\overrightarrow{DC}$,则$\overrightarrow{AE}•\overrightarrow{AF}$=(  )
A.$\frac{1}{2}$B.2C.1D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题中正确的是(  )
A.x=1是x2-2x+1=0的充分不必要条件
B.在△ABC中,A>B是cosA<cosB的必要不充分条件
C.?n∈N+,2n2+5n+2能被2整除是假命题
D.若p∧(¬q)为假,p∨(¬q)为真,则p,q同真或同假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若按如图的算法流程图运行,输入的N的值为5,则输出S值为(  )
A.4B.$\frac{5}{6}$C.$\frac{4}{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC是边长为2的等边三角形,已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,满足$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AC}$=2$\overrightarrow{a}$+$\overrightarrow{b}$,则下列结论正确的是(  )
A.(4$\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{BC}$B.|$\overrightarrow{b}$|=1C.$\overrightarrow{a}$•$\overrightarrow{b}$=1D.$\overrightarrow{a}$⊥$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设定义域为R+的函数f(x),对任意的正实数x,y,都有f(xy)=f(x)+f(y),且当x>1时有f(x)>0.
①求f(1)的值;
②判断f(x)在(0,+∞)上的单调性,并证明.
③若f($\frac{1}{a}$)=-1,求满足不等式f(1-x)<1的x的取值范围.

查看答案和解析>>

同步练习册答案