精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在原点,焦点在x轴上,一个顶点为B(0,-1),且其右焦点到直线x-y+2
2
=0
的距离为3.
(1)求椭圆方程;
(2)设直线l过定点Q(0,
3
2
)
,与椭圆交于两个不同的点M、N,且满足|BM|=|BN|.求直线l的方程.
解 (1)设椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)
,则b=1.
设右焦点F(c,0)(c>0),则由条件得3=
|c-0+2
2
|
2
,得c=
2

则a2=b2+c2=3,
∴椭圆方程为
x2
3
+y2=1

(2)若直线l斜率不存在时,直线l即为y轴,此时M,N为椭圆的上下顶点,|BN|=0,|BM|=2,不满足条件;
故可设直线l:y=kx+
3
2
(k≠0)
,与椭圆
x2
3
+y2=1
联立,消去y得:(1+3k2)x2+9kx+
15
4
=0

△=(9k)2-4(1+3k2)•
15
4
>0
,得k2
5
12

设M(x1,y1),N(x2,y2),MN的中点P(x0,y0),
由韦达定理得x1+x2=-
9k
1+3k2
,而y1+y2=k(x1+x2)+3=-
9k2
1+3k2
+3

x0=
x1+x2
2
y0=
y1+y2
2

由|BN|=|BM|,则有BP⊥MN,kBP=
y0+1
x0
=
y1+y2
2
+1
x1+x2
2
=
-
9k2
1+3k2
+5
-
9k
1+3k2
=-
1
k

可求得k2=
2
3
,检验k2=
2
3
∈(
5
12
,+∞)
,所以k=±
6
3

所以直线l的方程为y=
6
3
x+
3
2
y=-
6
3
x+
3
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在x轴上,离心率为
2
2
,且椭圆经过圆C:x2+y2-4x+2
2
y=0的圆心C.
(1)求椭圆的方程;
(2)设直线l过椭圆的焦点且与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点O,焦点在坐标轴上,直线y=2x+1与该椭圆相交于P和Q,且OP⊥OQ,|PQ|=
1011
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,对称轴为坐标轴,左焦点为F1(-3,0),右准线方程为x=
253

(1)求椭圆的标准方程和离心率e;
(2)设P为椭圆上第一象限的点,F2为右焦点,若△PF1F2为直角三角形,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,且椭圆过点P(3,2),焦点在坐标轴上,长轴长是短轴长的3倍,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,一个焦点F1(0,-2
2
),且离心率e满足:
2
3
,e,
4
3
成等比数列.
(1)求椭圆方程;
(2)直线y=x+1与椭圆交于点A,B.求△AOB的面积.

查看答案和解析>>

同步练习册答案