【题目】《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积
.弧田,由圆弧和其所对的弦所围成.公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与实际面积之间存在误差.现有圆心角为
,弦长等于
米的弧田. 按照上述经验公式计算所得弧田面积与实际面积的误差为_______平方米.(用“实际面积减去弧田面积”计算)
科目:高中数学 来源: 题型:
【题目】已知椭圆E:
的左焦点为
,且过点
.
![]()
(Ⅰ)求椭圆E的方程;
(Ⅱ)设直线
与椭圆E交于
两点,与
的交点为
,且满足.
①若
,求:
的值;
②设点
是椭圆E的左顶点,点
关于
轴的对称点为点
,试探究:在线段
上是否存在一个定点
,使得直线
过定点
,如果存在,求出点
的坐标;如果不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有大小形状完全相同的5个小球,其中3个白球的标号分别为1、 2 、3, 2 个黑球的标号分别为1、3.
(Ⅰ)从袋中随机摸出两个球,求摸到的两球颜色与标号都不相同的概率;
(Ⅱ)从袋中有放回地摸球,摸两次,每次摸出一个球,求摸出的两球的标号之和小于4 的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为
层,则每平方米的平均建筑费用为
(单位:元).
(1)写出楼房每平方米的平均综合费用
关于建造层数
的函数关系式;
(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆
的圆心在
轴上,且过点
,
.
![]()
(1)求圆
的方程;
(2)直线
:
与
轴交于点
,点
为直线
上位于第一象限内的一点,以
为直径的圆与圆
相交于点
,
.若直线
的斜率为-2,求
点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
,
的首项
,且满足
,
,其中
,设数列
,
的前项和分别为
,
.
(Ⅰ)若不等式
对一切
恒成立,求
.
(Ⅱ)若常数
且对任意的
,恒有
,求
的值.
(Ⅲ)在(Ⅱ)的条件下且同时满足以下两个条件:
(ⅰ)若存在唯一正整数
的值满足
;
(ⅱ)
恒成立.试问:是否存在正整数,使得
,若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题13分)已知函数f(x)=
-
(a>0,x>0).
(1)求证:f(x)在(0,+∞)上是单调递增函数;
(2)若f(x)在[
,2]上的值域是[
,2],求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点。那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线顶点在原点,焦点在
轴上,又知此抛物线上一点
到焦点的距离为6.
(1)求此抛物线的方程;
(2)若此抛物线方程与直线
相交于不同的两点
、
,且
中点横坐标为2,求
的值.
【答案】(1)
;(2)2.
【解析】试题分析:
(1)由题意设抛物线方程为
,则准线方程为
,解得
,即可求解抛物线的方程;
(2)由
消去
得
,根据
,解得
且
,得到
,即可求解
的值.
试题解析:
(1)由题意设抛物线方程为
(
),其准线方程为
,
∵
到焦点的距离等于
到其准线的距离,∴
,∴
,
∴此抛物线的方程为
.
(2)由
消去
得
,
∵直线
与抛物线相交于不同两点
、
,则有![]()
解得
且
,
由
,解得
或
(舍去).
∴所求
的值为2.
【题型】解答题
【结束】
20
【题目】如图,在四棱锥
中,底面
是平行四边形,
,侧面
底面
,
,
,
,
分别为
,
的中点,点
在线段
上.
![]()
(1)求证:
平面
;
(2)如果三棱锥
的体积为
,求点
到面
的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com