精英家教网 > 高中数学 > 题目详情
已知函数f(x)= 
(1)、求f(2)与f(),f(3)与f();
(2)、由(1)中求得结果,你能发现f(x) 与f()有什么关系?并证明你的结论;
(3)、求f(1)+f(2)+f(3)+的值.
(1)见解析(2)1(3)
(1). f(2)=" "     f()=   f(3)=" "      f()=
(2) f(x) +f()=1
f(x) +f()=+=1
(3). f(1)+f(2)+f(3)+= 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

将函数y=3sin(x-θ)的图象F按向量(,3)平移得到图象F′,若F′的一条对称轴是直线x=,则θ的一个可能取值是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数上是减函数,在上是增函数,函数上有三个零点,且1是其中一个零点.
(1)求的值;
(2)求的取值范围;
(3)试探究直线与函数的图像交点个数的情况,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a>0,函数f(x)=-ax在[1,+∞)上是单调函数.
(1)求实数a的取值范围;
(2)设≥1,f(x)≥1,且f(f())=,求证:f()=

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:如图,射线OAy=2x(x>0),射线OBy= –2x(x>0),动点Px, y)在的内部,N,四边形ONPM的面积为2..
(I)动点P的纵坐标y是其横坐标x的函数,求这个函数y=f(x)的解析式;
(II)确定y=f(x)的定义域.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

佛山某公司生产陶瓷,根据历年的情况可知,生产陶瓷每天的固定成本为14000元,每生产一件产品,成本增加210元.已知该产品的日销售量与产量之间的关系式为
,每件产品的售价与产量之间的关系式为

(Ⅰ)写出该陶瓷厂的日销售利润与产量之间的关系式;
(Ⅱ)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且
(1)求的值域;
(2)定义在R上的函数满足,且当,求在R上的解析式。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某公园举办雕塑展览吸引着四方宾客.旅游人数与人均消费(元)的关系如下:
(1)若游客客源充足,那么当天接待游客多少人时,公园的旅游收入最多?
(2)若公园每天运营成本为万元(不含工作人员的工资),还要上缴占旅游收入20%的税收,其余自负盈亏.目前公园的工作人员维持在40人.要使工作人员平均每人每天的工资不低于100元,并维持每天正常运营(不负债),每天的游客人数应控制在怎样的合理范围内?
(注:旅游收入=旅游人数×人均消费)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,已知AD=2,AB=,E、F、G、H分别是边AD、AB、BC、CD上的点,若AE=AF=CG=CH,问AE取何值时,四边形EFGH的面积最大?并求最大的面积。

查看答案和解析>>

同步练习册答案