精英家教网 > 高中数学 > 题目详情

函数.
(1)令,求的解析式;
(2)若上恒成立,求实数的取值范围.

(1) ;(2)实数的取值范围.

解析试题分析:(1) 因为,故, ,,,由此可得,是以4为周期,重复出现,故;(2)若上恒成立,求实数的取值范围,由得,,即上恒成立,令,只需求出上的最小值即可,可利用导数法来求最小值.
试题解析:(1)…周期为4,
.
(2)方法一:即上恒成立,
时,
时,,设


,则增;减.
,所以上存在唯一零点,设为,则
,所以处取得最大值,在处取得最小值,.
综上:.
方法二:设.
.
时,上恒成立,成立,故
时,上恒成立,,无解.
时,则存在使得增,减,
,解得,故.
综上:.
考点:函数与导数,函数与不等式综合问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数).
(I)若的定义域和值域均是,求实数的值;
(II)若在区间上是减函数,且对任意的,总有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求证:函数上的奇函数;
(2)若函数在区间上没有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知命题表示的曲线是双曲线;命题函数在区间上为增函数,若“”为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为.
(1)求函数上的最小值;
(2)对,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)判断函数的奇偶性;
(2)试用函数单调性定义说明函数在区间上的增减性;
(3)若满足:,试证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求下列函数f(x)的解析式.
(1) 已知f(1-x)=2x2-x+1,求f(x);
(2) 已知f=x2,求f(x);
(3) 已知一次函数f(x)满足f(f(x))=4x-1,求f(x);
(4) 定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x+1),求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

画出下列函数的图象.
(1)y=2x-1,x∈Z,|x|≤2;
(2)y=2x2-4x-3(0≤x<3);
(3)y=(lgx+|lgx|).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=.
(1)求函数f(x)的定义域;
(2)设α是第四象限的角,且tan α=-,求f(α)的值.

查看答案和解析>>

同步练习册答案