精英家教网 > 高中数学 > 题目详情

已知函数
(1)若,求证:函数上的奇函数;
(2)若函数在区间上没有零点,求实数的取值范围.

(1)详见解析;(2).

解析试题分析:(1)定义域关于原点对称,将代入算得
(2)考虑用补集思想解决此问题,因为,所以函数为单调递减函数,如果有零点,则,得到的取值范围,因为是求没有零点的的取值范围,所以再求其补集.
试题解析:解:(1 )定义域为关于原点对称.
因为
所以函数是定义在上的奇函数
(2)是实数集上的单调递减函数(不说明单调性扣2分)又函数的图象不间断,在区间恰有一个零点,有
解之得,故函数在区间没有零点时,实数的取值范围是               14分
考点:1.证明函数是奇函数;2.函数零点问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数中,为奇数,均为整数,且均为奇数.求证:无整数根。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,讨论函数在区间上的单调性;
(2)若,对任意的,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)当时,求的极大值点;
(2)设函数的图象与函数的图象交于两点,过线段的中点做轴的垂线分别交于点,证明:在点处的切线与在点处的切线不平行.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义:对于函数,若存在非零常数,使函数对于定义域内的任意实数,都有,则称函数是广义周期函数,其中称为函数的广义周期,称为周距.
(1)证明函数是以2为广义周期的广义周期函数,并求出它的相应周距的值;
(2)试求一个函数,使为常数,)为广义周期函数,并求出它的一个广义周期和周距
(3)设函数是周期的周期函数,当函数上的值域为时,求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,试判断并用定义证明函数的单调性;
(2)当时,求证函数存在反函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,曲线C1的参数方程为:为参数),以原点为极点,x轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C2是极坐标方程为:
(1)求曲线C2的直角坐标方程;
(2)若P,Q分别是曲线C1和C2上的任意一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数.
(1)令,求的解析式;
(2)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设a∈R,f(x)= (x∈R),试确定a的值,使f(x)为奇函数;

查看答案和解析>>

同步练习册答案