精英家教网 > 高中数学 > 题目详情

设函数中,为奇数,均为整数,且均为奇数.求证:无整数根。

详见解析.

解析试题分析:采用反证法,假设有整数根,则,进而均为奇数,即为奇数,为偶数,即可得到也为奇数,即可得到为奇数,即均为奇数,这与为奇数,为奇数时,为偶数矛盾,故命题得证.
证明:假设有整数根,则 (2分)        
均为奇数,即为奇数,为偶数,(4分),
为奇数,∴也为奇数  (6分)
为奇数,∴为奇数;∴均为奇数  (9分)
为奇数,为奇数,∴又为偶数  矛盾    (11分)
无整数根  (12分)
考点:函数与方程的综合运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知为常数,,函数且方程有等根.
(1)求的解析式及值域;
(2)设集合,若,求实数的取值范围;
(3)是否存在实数,使的定义域和值域分别为?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-1,g(x)=
(1)求f[g(2)]和g[f(2)]的值;
(2)求f[g(x)]和g[f(x)]的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时函数取得极小值,求a的值;(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的奇偶性;
(2)若函数上为减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•重庆)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).
(1)将V表示成r的函数V(r),并求该函数的定义域;
(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•浙江)已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x∈[0,2]时,求|f(x)|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(I)若的定义域和值域均是,求实数的值;
(II)若在区间上是减函数,且对任意的,总有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求证:函数上的奇函数;
(2)若函数在区间上没有零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案