精英家教网 > 高中数学 > 题目详情
求双曲线9y2-16x2=144的实半轴长,虚半轴长,焦点坐标,离心率,渐近线方程.
考点:双曲线的标准方程
专题:圆锥曲线的定义、性质与方程
分析:把双曲线9y2-16x2=144方程化为
y2
16
-
x2
9
=1
,由此利用双曲线的性质能求出结果.
解答: 解:把双曲线9y2-16x2=144方程化为
y2
16
-
x2
9
=1

由此可知实半轴长a=4,虚半轴长b=3,c=
a2+b2
=5

焦点坐标(0,-5),(0,5),
离心率e=
c
a
=
5
4
,渐近线方程为y=±
4
3
x
点评:本题考查双曲线的实半轴长,虚半轴长,焦点坐标,离心率,渐近线方程的求法,是基础题,解题时要认真审题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于正项数列{an},定义Hn=
n
a1+2a2+3a3+…+nan
为{an}的“给力”值,现知某数列的“给力”值为Hn=
2
n+2
,则数列{an}的通项公式为an=(  )
A、
1
2n
+1
B、
1
n
+1
C、
1
2
+n
D、2n-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位要建造一个长方体无盖贮水箱,其容积为48m3,深为3m,如果池底每1m2的造价为40元,池壁每1m2的造价为20元,问怎样设计水箱能使总造价最低,最低总造价是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的公比为q(0<q<1),且a2+a5=
9
8
,a3a4=
1
8

(1)求数列{an}的通项公式;
(2)设该等比数列{an}的前n项和为Sn,正整数m,n满足
Sn-m
Sn+1-m
1
2
,求出所有符合条件的m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈R,函数f(x)=lnx-ax.
(1)若a=2,求函数f(x)的单调区间;
(2)若函数f(x)≤0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和Sn=-
1
2
n2+kn(k∈N*)
,且Sn的最大值为8.
(1)确定常数k,求an
(2)求Sn=|a1|+|a2|+|a3|+…+|an|(n∈N*
(3)求数列{
9-2an
2n
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-a
x-2a
(a∈R)
(1)若a=0,解不等式|f(x)|>1;
(2)解关于x的不等式f(x)≥-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,x∈[-1,1]时,函数y=-x2-ax+b有最小值-1,最大值1,求使函数取得最小值和最大值时相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(α+
π
4
)=
3
5
,sin(α-
π
4
)=
4
5
,求sinα,cosα和tanα的值.

查看答案和解析>>

同步练习册答案