【题目】 已知函数
(a为常数).
(Ⅰ)当
时,求函数
的单调区间;
(Ⅱ)当
时,不等式
恒成立,求实数
的取值范围.
【答案】(1)单调增区间为
,单调减区间为
和
.(2)![]()
【解析】试题分析:(1)先确定函数定义域
,再求导函数
,进而求定义区间上导函数的零点
,最后列表分析导函数符号并确定单调区间:增区间为
,,减区间为
和
.(2)不等式恒成立问题,一般转化为对应函数最值问题:
,再利用导数研究函数
单调性,确定当
时有最大值为
,即得实数
的取值范围.
试题解析:解:(Ⅰ)函数的定义域为
,
当
时,
,
,
由
得,
,
由
得,
或
,
∴函数
的单调增区间为
,
单调减区间为
和
.
(Ⅱ)当
时,
恒成立,
令
,
问题转换为
时,
.
,
①当
时,
,
在
上单调递增,
此时
无最大值,故
不合题意.
②当
时,令
解得,
,
此时
在
上单调递增,
此时无最大值,故
不合题意.
③当
时,令
解得,
,
当
时,
,
而
在
上单调递增,在
上单调递减,
,
令
,
,
则
,
在
上单调递增,
又
,
当
时,
,
在
上小于或等于
不恒成立,即
不恒成立,
故
不合题意.
当
时,
,
而此时
在
上单调递减,
,符合题意.
综上可知,实数
的取值范围是
.
(也可用洛必达法则)
科目:高中数学 来源: 题型:
【题目】已知四棱锥
,底面
为菱形,
,H为
上的点,过
的平面分别交
于点
,且
平面
.
![]()
(1)证明:
;
(2)当
为
的中点,
,
与平面
所成的角为
,求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,曲线C的参数方程是
(θ为参数).以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,直线l的极坐标方程为:![]()
(1)求曲线C的极坐标方程;
(2)设直线θ=
与直线l交于点M,与曲线C交于P,Q两点,已知|OM||OP||OQ)=10,求t的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
![]()
(Ⅰ)证明MN∥平面PAB;
(Ⅱ)求直线AN与平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
与二次曲线
有4个不同的交点,由下面的草图可以看出,下面三个结论是成立的,请给出证明.
(1).两曲线的4个交点中,至少有两个交点位于
轴的下方;
(2).抛物线
必与
轴有两个不同的交点,记为
,
,
;
(3).两曲线的4个交点中,必存在一点
,使
.
注.对
、
、
的不同取值会有无数个图形,此处仅就
,
各给出一个示意图,同时也就限制“由图看出”的解答.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABCA1B1C1中(侧棱与底面垂直的棱柱),AC=BC=1,∠ACB=90°,AA1=
,D 是A1B1的中点.
![]()
(1)求证:C1D⊥平面AA1B1B;
(2)当点F 在BB1上的什么位置时,AB1⊥平面C1DF ?并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从1到9的九个数字中取三个偶数四个奇数,试问:
①能组成多少个没有重复数字的七位数?
②上述七位数中三个偶数排在一起的有几个?
③在①中的七位数中,偶数排在一起、奇数也排在一起的有几个?
④在①中任意两偶数都不相邻的七位数有几个?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com