精英家教网 > 高中数学 > 题目详情
20.已知f(x)是偶函数,且在[0,+∞)上是增函数,若f(lg x)>f(2),则x的取值范围是(0,$\frac{1}{100}$)∪(100,+∞).

分析 根据题意,由函数的奇偶性与单调性分析可得f(lg x)>f(2)?|lg2|>2;即lg2<-2或lg2>2,解可得x的取值范围,即可得答案.

解答 解:根据题意,f(x)是偶函数,且在[0,+∞)上是增函数,
则f(lg x)>f(2)?|lg2|>2;
即lg2<-2或lg2>2,
解可得0<x<$\frac{1}{100}$或x>100;
即x的取值范围是(0,$\frac{1}{100}$)∪(100,+∞);
故答案为:(0,$\frac{1}{100}$)∪(100,+∞).

点评 本题考查函数单调性与奇偶性的综合应用,关键是将f(lg x)>f(2)转化为|lg2|>2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=x2-mx对任意的x1,x2∈[0,2],都有|f(x2)-f(x1)|≤9,求实数m的取值范围$[-\frac{5}{2},\frac{13}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的长轴长为4,焦距为2.
(1)求椭圆C的方程:
(2)过点D(0,1)且斜率为k的动直线l与椭圆C相交于A、B两点,E是y轴上异于点D的一点,记△EAD与△EBD的面积分别为S1,S2,满足S1=λS2,其中λ=$\frac{{|{EA}|}}{{|{EB}|}}$.
(i)求点E的坐标:
(ii)若λ=2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C的对边分别为a,b,c,已知向量$\overrightarrow m=(a+c,a-b)$与向量$\overrightarrow n=(b,a-c)$互相平行,且$c=\sqrt{3}$.
(1)求角C;
(2)求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,AB是圆O的直径,矩形DCBE垂直于圆O所在的平面,AB=4,BE=2.
(Ⅰ)证明:平面ADE⊥平面ACD;
(Ⅱ)当三棱锥C-ADE体积最大时,求三棱锥C-ADE的高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.1010111(2)=__________(10)(  )
A.85B.87C.84D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,则该几何体的体积为(  )
A.4B.2C.6D.$\frac{7}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.抽签口试,共有10张不同的考签.每个考生抽1张考签,抽过的考签不再放回.考生王某会答其中3张,他是第5个抽签者,求王某抽到会答考签的概率$\frac{3}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.从4名男生和5名女生中任选5人参加数学课外小组.
(1)若选2名男生和3名女生,且女生甲必须入选,求共有多少种不同的选法;
(2)记“男生甲和女生乙不同时入选”为事件A,求A发生的概率.

查看答案和解析>>

同步练习册答案