分析 (1)由a=2,c=1,b2=a2-c2=3,即可求得椭圆方程;
(2)(i)根据三角形的面积公式,求得sin∠AED=sin∠BED,则∠AED=∠BED,可得k1+k2=0,设直线l的方程,代入椭圆方程,利用韦达定理及直线的斜率公式,即可求得m的值,求得点E的坐标:
(ii)由(i)可知:$\overrightarrow{AD}$=2$\overrightarrow{DB}$,根据向量的数量积的坐标运算及韦达定理即可求得k的值,求得直线l的方程.
解答 解:(1)由椭圆的焦点在x轴上,2a=4,a=2,焦距2c=2,c=1.
则b2=a2-c2=3,
∴椭圆的标准方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)(i)由S1=$\frac{1}{2}$丨EA丨丨ED丨sin∠AED,S2=$\frac{1}{2}$丨EB丨丨ED丨sin∠BED,
S1=λS2,丨EA丨sin∠AED=λ丨EB丨sin∠BED,
由λ=$\frac{{|{EA}|}}{{|{EB}|}}$.则sin∠AED=sin∠BED,
由∠AED+∠BED<π,∴∠AED=∠BED,
因此直线EA和ED的倾斜角互补,
由题意可知直线EA和EB的斜率存在,分别设为k1,k2,则k1+k2=0,
由题意可知,直线l的方程y=kx+1,
$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,整理得:(3+4k2)x2+8kx-8=0,
由△>0恒成立,
设A(x1,y1),B(x2,y2),E(0,m),
x1+x2=-$\frac{8k}{3+4{k}^{2}}$,x1x2=-$\frac{8}{3+4{k}^{2}}$,
k1+k2=$\frac{{y}_{1}-m}{{x}_{1}}$+$\frac{{y}_{2}-m}{{x}_{2}}$=$\frac{k{x}_{1}+1-m}{{x}_{1}}$+$\frac{k{x}_{2}+1-m}{{x}_{2}}$,
=2k+(1-m)($\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$)=2k+(1-m)$\frac{{x}_{1}+{x}_{2}}{{x}_{1}{x}_{2}}$,
=2k+k(1-m)=k(3-m),
由k1+k2=0,则k(3-m)=0,对任意k∈R恒成立,则m=3,
∴存在点E点坐标为(0,3);
(ii)由λ=2时,S1=2S2,$\frac{{S}_{1}}{{S}_{2}}$=2,
为△EAD与△EBD都以E为顶点,又有相同的高,则$\frac{{S}_{1}}{{S}_{2}}$=$\frac{丨AD丨}{丨DB丨}$,
∴$\frac{丨AD丨}{丨DB丨}$=2,则$\overrightarrow{AD}$=2$\overrightarrow{DB}$,
设A(x1,y1),B(x2,y2),D(0,1),则$\overrightarrow{AD}$=(-x1,1-y1),$\overrightarrow{DB}$=(x2,y2-1),
由$\overrightarrow{AD}$=2$\overrightarrow{DB}$,则(-x1,1-y1)=2(x2,y2-1),
∴-x1=2x2,即x1=-2x2,代入解得:-x2=-$\frac{8k}{3+4{k}^{2}}$,-x22=$\frac{8}{3+4{k}^{2}}$,
∴x2=$\frac{8k}{3+4{k}^{2}}$,x22=$\frac{4}{3+4{k}^{2}}$,
∴($\frac{8k}{3+4{k}^{2}}$)2=$\frac{4}{3+4{k}^{2}}$,解得:k=±$\frac{1}{2}$,
∴直线l的方程为:y=$\frac{1}{2}$x+1或y=-$\frac{1}{2}$x+1.![]()
点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,向量的坐标运算,直线斜率公式的应用,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,+∞) | B. | [2,+∞) | C. | (-∞,-2] | D. | (-∞,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com