分析 (1)先证明PN⊥AD,再证明BN⊥AD,即有AD⊥平面PNB,又AD∥BC,从而可证BC⊥平面PNB.
(2)以N为原点,NA为x轴,NB为y轴,NP为z轴,建立空间直角坐标系,利用向量法能求出M是线段PC中点时,二面角M-BN-D为60°.
解答 证明:(1)∵PA=AD,N为AD的中点,![]()
∴PN⊥AD,
又底面ABCD为菱形,∠BAD=60°,
∴△ABD为等边三角形,又因为N为AD的中点,
∴BN⊥AD,又PN∩BN=N
∴AD⊥平面PNB,
∵AD∥BC
∴BC⊥平面PNB.
解:(2)∵平面PAD⊥平面ABCD,BC⊥平面PNB,
∴以N为原点,NA为x轴,NB为y轴,NP为z轴,
建立空间直角坐标系,
则N(0,0,0),B(0,$\sqrt{3}$,0),
P(0,0,$\sqrt{3}$),C(-2,$\sqrt{3}$,0),D(-1,0,0),
$\overrightarrow{ND}$=(-1,0,0),
设M(a,b,c),$\overrightarrow{PM}=λ\overrightarrow{PC}$,则(a,b,c-$\sqrt{3}$)=(-2λ,$\sqrt{3}λ$,-$\sqrt{3}λ$),
∴$\left\{\begin{array}{l}{a=-2λ}\\{b=\sqrt{3}λ}\\{c=\sqrt{3}-\sqrt{3}λ}\end{array}\right.$,∴M(-2λ,$\sqrt{3}λ$,$\sqrt{3}-\sqrt{3}λ$),$\overrightarrow{NM}$=(-2λ,$\sqrt{3}λ$,$\sqrt{3}-\sqrt{3}λ$),
平面BND的法向量$\overrightarrow{n}$=(0,0,1),
设平面BMN的法向量$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{NM}=-2λx+\sqrt{3}λy+(\sqrt{3}-\sqrt{3}λ)z=0}\\{\overrightarrow{m}•\overrightarrow{ND}=-x=0}\end{array}\right.$,
取z=1,得$\overrightarrow{m}$=(0,$\frac{λ-1}{λ}$,1),
∵二面角M-BN-D为60°,
∴cos60°=$\frac{|\overrightarrow{n}•\overrightarrow{m}|}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{1}{\sqrt{(\frac{λ-1}{λ})^{2}+1}}$=$\frac{1}{2}$,解得$λ=\frac{1}{2}$,
∴M是线段PC中点时,二面角M-BN-D为60°.
点评 本题主要考查了直线与平面垂直的判定,向量法的运用,考查了空间想象能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | f(1)<f(-2)<f(3) | B. | f(-2)<f(1)<f(3) | C. | f(3)<f(-2)<f(1) | D. | f(3)<f(1)<f(-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 1 | C. | $\frac{1}{2}$或$\frac{3}{2}$ | D. | 1或$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com