已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)= f1(x)+ f2(x).
(Ⅰ) 求函数f(x)的表达式;
(Ⅱ) 证明:当a>3时,关于x的方程f(x)= f(a)有三个实数解.
(Ⅰ) f(x)=x2+.(Ⅱ) f(x)=f(a),得x2+=a2+, 即=-x2+a2+.在同一坐标系内作出f2(x)=和f3(x)= -x2+a2+的大致图象,其中f2(x)的图象是以坐
标轴为渐近线,且位于第一、三象限的双曲线, f3(x)与的图象是以(0, a2+)为顶点,开口向下的抛物线.因此, f2(x)与f3(x)的图象在第三象限有一个交点,即f(x)=f(a)有一个负数解.又∵f2(2)="4," f3(2)= -4+a2+,当a>3时,. f3(2)-f2(2)= a2+-8>0,当a>3时,在第一象限f3(x)的图象上存在一点(2,f(2))在f2(x)图象的上方.f2(x)与f3(x)的图象在第一象限有两个交点,即f(x)=f(a)有两个正数解.因此,方程f(x)=f(a)有三个实数解.
解析试题分析:(Ⅰ)由已知,设f1(x)=ax2,由f1(1)=1,得a="1," ∴f1(x)= x2.设f2(x)=(k>0),它的图象与直线y=x的交点分别为A(,),B(-,-)
由=8,得k="8,." ∴f2(x)=.故f(x)=x2+.
(Ⅱ) (证法一)f(x)=f(a),得x2+=a2+,
即=-x2+a2+.在同一坐标系内作出f2(x)=和
f3(x)= -x2+a2+的大致图象,其中f2(x)的图象是以坐
标轴为渐近线,且位于第一、三象限的双曲线, f3(x)与的图象是以(0, a2+)为顶点,开口向下的抛物线.因此, f2(x)与f3(x)的图象在第三象限有一个交点,即f(x)=f(a)有一个负数解.又∵f2(2)="4," f3(2)= -4+a2+,当a>3时,. f3(2)-f2(2)= a2+-8>0,当a>3时,在第一象限f3(x)的图象上存在一点(2,f(2))在f2(x)图象的上方.f2(x)与f3(x)的图象在第一象限有两个交点,即f(x)=f(a)有两个正数解.因此,方程f(x)=f(a)有三个实数解.
(证法二)由f(x)=f(a),得x2+=a2+,即(x-a)(x+a-)=0,得方程的一个解x1=a.方程x+a-=0化为ax2+a2x-8=0,由a>3,△=a4+32a>0,得x2=, x3=,x2<0, x3>0, ∵x1≠ x2,且x2≠ x3.若x1= x3,即a=,则3a2=, a4=4a,得a=0或a=,这与a>3矛盾,∴x1≠ x3.故原方程f(x)=f(a)有三个实数解.
考点:本题考查了函数与方程的运用
点评:函数与方程是高中数学重要的数学思想, 将函数问题转化为方程问题求解,可以使函数中好多问题变得比较好解决
科目:高中数学 来源: 题型:解答题
(本题满分13分)设函数满足:都有,且时,取极小值
(1)的解析式;
(2)当时,证明:函数图象上任意两点处的切线不可能互相垂直;
(3)设, 当时,求函数的最小值,并指出当取最小值时相应的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
(本小题满分12分)某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.
(1)分别写出用表示和用表示的函数关系式(写出函数定义域);
(2)怎样设计能使S取得最大值,最大值为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com