精英家教网 > 高中数学 > 题目详情

(本题满分12分)
设函数满足:对任意的实数
(Ⅰ)求的解析式;
(Ⅱ)若方程有解,求实数的取值范围.

(1)  (2)

解析试题分析:解:⑴
所以                   …………………5分
⑵①当时,不成立.
②当时,

因为函数上单增,所以
③当时,

因为函数上单增,所以
综上,实数的取值范围是                   ……………………12分
考点:本试题助于傲世考查了函数解析式以及函数的最值。
点评:解决该试题的关键是理解换元法的思想,整体代换得到解析式,同时能将方程有解问题,通过分离变量的方法来运用图像与图像的交点问题来得到。而参数的取值范围即为函数的值域,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(1)若对一切实数x恒成立,求实数a的取值范围。
(2)求在区间上的最小值的表达式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率P与每日生产产品件数x(x∈N*)间的关系为P,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%).
(Ⅰ)将日利润y(元)表示成日产量x(件)的函数;
(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)
如图,开发商欲对边长为的正方形地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路(点分别在上),根据规划要求的周长为

(1)设,求证:
(2)欲使的面积最小,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)= f1(x)+ f2(x).
(Ⅰ) 求函数f(x)的表达式;
(Ⅱ) 证明:当a>3时,关于x的方程f(x)= f(a)有三个实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了应对国际原油的变化,某地建设一座油料库。现在油料库已储油料吨,计划正式运营后的第一年进油量为已储油量的,以后每年的进油量为上一年年底储油量的,且每年运出吨,设为正式运营第n年年底的储油量。(其中
(1)求的表达式
(2)为应对突发事件,该油库年底储油量不得少于吨,如果吨,该油库能否长期按计划运营?如果可以请加以证明;如果不行请求出最多可以运营几年。(取

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分6分)
(1)计算
(2)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求证:x1>1>x2
②若当x≥x1时,关于x的不等式ax2-x+xe+1≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数,在同一周期内,
时,取得最大值;当时,取得最小值.
(Ⅰ)求函数的解析式;
(Ⅱ)求函数的单调递减区间;
(Ⅲ)若时,函数有两个零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案