精英家教网 > 高中数学 > 题目详情
已知△ABC 中,AB=AC,D是△ABC外接圆劣弧上的点(不与点A,C重合),延长BD至E。
(1)求证:AD的延长线平分∠CDE;
(2)若∠BAC=30°,△ABC中BC边上的高为2+,求△ABC外接圆的面积
解:(1)如图,设F为AD延长线上一点
∵A,B,C,D四点共圆,
∴∠CDF=∠ABC
又AB=AC
∴∠ABC=∠ACB,且∠ADB=∠ACB,
∴∠ADB=∠CDF,
对顶角∠EDF=∠ADB,
故∠EDF=∠CDF
即AD的延长线平分∠CDE。
(2)设O为外接圆圆心,连接AO交BC于H,则AH⊥BC
连接OC,
由题意∠OAC=∠OCA=15°,∠ACB=75°,
∴∠OCH=60°
设圆半径为r,则r+r=2+,解得r=2,
∴外接圆的面积为4π。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,A=60°,a=
15
,c=4,那么sinC=
2
5
5
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,A(4,2),B(1,8),C(-1,8).
(1)求AB边上的高所在的直线方程;
(2)直线l∥AB,与AC,BC依次交于E,F,S△CEF:S△ABC=1:4.求l所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a=2,b=1,C=60°,则边长c=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a=2
3
,若
m
=(-cos
A
2
,sin
A
2
)
n
=(cos
A
2
,sin
A
2
)
满足
m
n
=
1
2
.(1)若△ABC的面积S=
3
,求b+c的值.(2)求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,A,B,C的对边分别为a,b,c,且
(AB)2
=
AB
AC
+
BA
BC
+
CA
CB

(Ⅰ)判断△ABC的形状,并求t=sinA+sinB的取值范围;
(Ⅱ)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc,对任意的满足题意的a,b,c都成立,求k的取值范围.

查看答案和解析>>

同步练习册答案