精英家教网 > 高中数学 > 题目详情
10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2$\sqrt{2}$,若直线y=-$\sqrt{3}$(x+$\sqrt{2}$)与椭圆交于点M,满足$\frac{1}{2}$∠MF1F2=∠MF2F1,则离心率是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{3}$-1C.$\frac{{\sqrt{3}-1}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 由题意可知:∠MF1F2=$\frac{π}{3}$,∠MF2F1=$\frac{π}{6}$,∠F1MF2=90°.根据三角形的关系即可求得丨MF1丨+丨MF2丨=2a=$\sqrt{2}$($\sqrt{3}$+1),根据椭圆的离心率公式即可求得椭圆的离心率.

解答 解:如图所示,由直线y=-$\sqrt{3}$(x+$\sqrt{2}$),由tanα=-$\sqrt{3}$,则α=$\frac{2π}{3}$.
又椭圆Γ的一个交点满足∠MF1F2=2∠MF2F1,则∠MF2F1=$\frac{π}{3}$,则不满足三角形的内角和为π,
∴∠MF1F2=$\frac{π}{3}$,∠MF2F1=$\frac{π}{6}$,∠F1MF2=90°.
在Rt△F1MF2中,由丨F1F2丨=2c=2$\sqrt{2}$,丨MF1丨=$\frac{1}{2}$丨F1F2丨=$\sqrt{2}$,
丨MF2丨=$\frac{\sqrt{3}}{2}$丨F1F2丨=$\sqrt{6}$,
由丨MF1丨+丨MF2丨=2a=$\sqrt{2}$($\sqrt{3}$+1),
∴该椭圆的离心率e=$\frac{2c}{2a}$=$\frac{2}{\sqrt{3}+1}$=$\sqrt{3}$-1,
椭圆的离心率e=$\sqrt{3}$-1,
故选B.

点评 本题考查椭圆的离心率的求法,直线与椭圆的位置关系,考查三角形的性质,考查数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如上图是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:
①1是函数y=f(x)的最小值点;
②-2是函数y=f(x)的极值点
③y=f(x)在区间(-2,2)上单调递增;
④y=f(x)在x=0处切线的斜率小于零.
则正确命题的序号是(  )
A.①④B.②④C.③④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.复数$\frac{(-1+\sqrt{3}i)^{5}}{1+\sqrt{3}i}$的值是(  )
A.-16B.16C.-$\frac{1}{4}$D.$\frac{1}{4}$-$\frac{\sqrt{3}}{4}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,直线l过点$P(1,\sqrt{3})$和M(2,0),直线l与曲线C:y2=4x交于A,B两点.
(1)写出直线l的参数方程;
(2)求$\frac{1}{{|{MA}|}}+\frac{1}{{|{MB}|}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=$\frac{1}{3}$x3-ax2+3bx-2的导函数为f′(x),若f′(x)满足f′(x+2)=f′(2-x),且f(x)≥-2在[1,3]上恒成立,则实数b的取值范围为[7,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.侧面都是直角三角形的正三棱锥,底面边长为2,则此棱锥的全面积是(  )
A.$3+\sqrt{3}$B.$6+2\sqrt{3}$C.$6+\sqrt{3}$D.$3+2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=xex-$\frac{1}{2}$a(x+1)2(其中a∈R,e为自然对数的底数,e=2.718128…).
(1)当a=1时,求f(x)的单调区间;
(2)讨论函数f(x)极值点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.自点P(2,2)作圆(x-2)2+(y-3)2=1的切线l,切线l的方程y=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若函数f(x)的定义域为R,满足对任意x1,x2∈R,有f(x1+x2)≤f(x1)+f(x2),则称f(x)为“V形函数”.若函数g(x)定义域为R,恒大于0,且对任意x1,x2∈R,恒有lg[f(x1+x2)]<lg[f(x1)]+lg[f(x2)],则称g(x)为“对数V形函数”.
(1)当f(x)=x2时,判断f(x)是否是“V形函数”并说明理由;
(2)当时g(x)=5x+2判断g(x)是否是“对数V形函数”,并说明理由;
(3)若函数f(x)是“V形函数”,且满足对任意x∈R都有f(x)≥2,问f(x)是否是“对数V形函数”?请加以证明,如果不是,请说明理由.

查看答案和解析>>

同步练习册答案