分析 (1)通过代入a=1可知f(x)=xex-$\frac{1}{2}$(x+1)2,进而求导解不等式可得函数f(x)的单调区间;
(2)通过求导可知f′(x)=(x+1)(ex-a),分a≤0、a>0两种情况讨论即可.
解答 解:(1)当a=1时,f(x)=xex-$\frac{1}{2}$(x+1)2,
则f′(x)=ex+xex-(x+1)=(x+1)(ex-1),
由f′(x)=0,得x=-1或x=0.
列表得:
| x | (-∞,-1) | -1 | (-1,0) | 0 | (0,+∞) |
| f'(x) | + | 0 | - | 0 | + |
| f(x) | ↗ | 极大值 | ↘ | 极小值 | ↗ |
点评 本题考查利用导数研究函数的单调性,考查分类讨论的思想,考查运算求解能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{6}}}{4}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{10}}}{4}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\sqrt{3}$-1 | C. | $\frac{{\sqrt{3}-1}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{35}{8}$ | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 参加纪念活动的环节数 | 0 | 1 | 2 | 3 |
| 概率 | $\frac{1}{6}$ | m | n | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com