精英家教网 > 高中数学 > 题目详情
2.下列函数中,在其定义域内既是奇函数又是减函数的是(  )
(1)y=-|x|(x∈R)(2)y=-x3-x(x∈R)(3)y=($\frac{1}{2}$)x(x∈R)(4)y=-x+$\frac{2}{x}$.
A.(2)B.(1)(3)C.(4)D.(2)(4)

分析 逐一分析给定四个函数的奇偶性和单调性,可得答案.

解答 解:(1)y=-|x|(x∈R)是偶函数;
(2)y=-x3-x(x∈R)既是奇函数又是减函数;
(3)y=($\frac{1}{2}$)x(x∈R)是非偶非偶函数;
(4)y=-x+$\frac{2}{x}$是奇函数但在定义上不连续,不是减函数,
故选:A

点评 本题考查的知识点是函数的奇偶性和单调性,是函数图象和性质的综合应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知f(x)=ax2+bx是定义在[a-1,3a]上的偶函数,那么a+b=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=x•ex在极值点处的切线方程为y=-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.两个球的半径之比为1:3,那么这两个球的表面积之比为1:9;体积之比为1:27.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l:2x+y-1=0与圆C:x2+y2=1相交于A,B两点.
(1)求△AOB的面积(O为坐标原点);
(2)设直线ax+by=1与圆C:x2+y2=1相交于M,N两点(其中a,b是实数),若OM⊥ON,试求点P(a,b)与点Q(0,1)距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域是[2a,2b],则称f(x)为“倍扩函数”,若函数f(x)=log2(2x+t)为“倍扩函数”,则实数t的取值范围是(  )
A.$(-∞,-\frac{1}{4})$B.$(-\frac{1}{4},0)$C.$(-\frac{1}{4},0]$D.$[-\frac{1}{4},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)是定义在R上的奇函数,且当x≥0时f(x)=$\frac{2x}{x+2}$.
(1)求f(x)的解析式;
(2)判断f(x)的单调性(不必证明);
(3)若对任意的t∈R,不等式f(k-3t2)+f(t2+2t)≤0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列说法中,正确的是②④.(填序号)
①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1;
②在同一平面直角坐标系中,y=2x与y=2-x的图象关于y轴对称;
③y=($\sqrt{3}$)-x是增函数;
④定义在R上的奇函数f(x)有f(x)•f(-x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记$S=\frac{梯形的周长}{梯形的面积}$,则S的最小值是$\frac{4\sqrt{6}}{3}+2\sqrt{3}$.

查看答案和解析>>

同步练习册答案