分析 先设剪成的小正三角形的边长为x表示出S的解析式,然后求S的最小值,令3-x=t,代入整理,利用基本不等式得到最小值.
解答 解:设剪成的小正三角形的边长为x,则:S=$\frac{3-x}{\frac{1}{2}×(x+1)×(1-x)\frac{\sqrt{3}}{2}}$=$\frac{4}{\sqrt{3}}×\frac{3-x}{1-{x}^{2}}$,(0<x<1)
令3-x=t,t∈(2,3),
∴S=$\frac{4}{\sqrt{3}}×\frac{t}{6t-8-{t}^{2}}$=$\frac{4}{\sqrt{3}}×\frac{t}{6-\frac{8}{t}-t}$$≥\frac{4}{\sqrt{3}}×\frac{1}{6-2\sqrt{8}}$=$\frac{4\sqrt{6}}{3}+2\sqrt{3}$,当且仅当t=$\frac{8}{t}$即t=2$\sqrt{2}$时等号成立;
故答案为:$\frac{{4\sqrt{6}}}{3}+2\sqrt{3}$.
点评 本题的考点是解三角形的实际运用,主要考查函数模型的建立,考查利用基本不等式求最值,关键是依据题意构建函数模型.
科目:高中数学 来源: 题型:选择题
| A. | (2) | B. | (1)(3) | C. | (4) | D. | (2)(4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | $\frac{13}{4}$ | D. | 13 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x<-2或x>3} | B. | {x|x<-3或x>2} | C. | {x|-2<x<3} | D. | {x|-3<x<2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{5}$ | B. | $\frac{6}{5}$ | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com