精英家教网 > 高中数学 > 题目详情
4.角α的终边过函数y=loga(x-3)+2的定点P,则sin2α+cos2α=(  )
A.$\frac{7}{5}$B.$\frac{6}{5}$C.4D.5

分析 利用函数的图象经过定点P的坐标,任意角的三角函数的定义,求得sinα和cosα的值,再利用二倍角公式求得要求式子的值.

解答 解:∵函数y=loga(x-3)+2过定点P(4,2),且角α的终边过点P,
∴x=4,y=2,r=|OP|=2$\sqrt{5}$,
∴sinα=$\frac{y}{r}$=$\frac{\sqrt{5}}{5}$,cosα=$\frac{x}{r}$=$\frac{2\sqrt{5}}{5}$,
∴sin2α+cos2α=2sinαcosα+2cos2α-1=2×$\frac{\sqrt{5}}{5}$×$\frac{2\sqrt{5}}{5}$+2×$\frac{20}{25}$-1=$\frac{7}{5}$,
故选:A.

点评 本题主要考查函数的图象经过定点问题,任意角的三角函数的定义,二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)是定义在R上的奇函数,且当x≥0时f(x)=$\frac{2x}{x+2}$.
(1)求f(x)的解析式;
(2)判断f(x)的单调性(不必证明);
(3)若对任意的t∈R,不等式f(k-3t2)+f(t2+2t)≤0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元.
(1)写出y与x之间的函数关系式;
(2)此游艇使用多少年,可使年平均盈利额最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.将边长为1的正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记$S=\frac{梯形的周长}{梯形的面积}$,则S的最小值是$\frac{4\sqrt{6}}{3}+2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC三边a,b,c上的高分别为$\frac{1}{2}$,$\frac{{\sqrt{2}}}{2}$,1,则cosA等于(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{2}}}{2}$C.$-\frac{{\sqrt{2}}}{4}$D.$-\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=1+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}}$,(t为参数),以坐标原点为极点,x正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=$\frac{sinθ}{{1-{{sin}^2}θ}}$.
(1)写出直线l的极坐标方程与曲线C的直角坐标方程.
(2)若点P是曲线C上的动点,求点P到直线l的距离的最小值,并求出此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知:
命题p:若函数f(x)=x2+|x-a|是偶函数,则a=0.
命题q:?m∈(0,+∞),关于x的方程mx2-2x+1=0有解.
在①p∨q;②p∧q;③(¬p)∧q;④(¬p)∨(¬q)中为真命题的是(  )
A.②③B.②④C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知关于x的不等式ax2+ax+2>0的解集为R,记实数a的所有数值构成的集合为M.
(1)求M;
(2)若t>0,对?a∈M,有(a2-2a)t≤t2+3t-46,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,a2=3,且2Sn=n(an+1),n∈N*
(1)求{an}的通项公式;
(2)数列{bn}满足bn=pn-an,且{bn}的前n项和为Tn,若对任意n∈N*,都有Tn≤T6,求实数p的取值范围.

查看答案和解析>>

同步练习册答案