精英家教网 > 高中数学 > 题目详情
13.已知关于x的不等式ax2+ax+2>0的解集为R,记实数a的所有数值构成的集合为M.
(1)求M;
(2)若t>0,对?a∈M,有(a2-2a)t≤t2+3t-46,求t的最小值.

分析 (1)对a进行讨论求解不等式ax2+ax+2>0的解集为R.可得a的范围,即集合M.
(2)分离参数,构造参数方程求解.

解答 解:(1)当a=0时,此时2>0,满足题意;
当a≠0时,要使不等式ax2+ax+2>0的解集为R.
需满足$\left\{\begin{array}{l}{a>0}\\{{a}^{2}-8a<0}\end{array}\right.$,解得:0<a<8.
综上可得:0≤a<8.,
所以:集合M={a|0≤a<8}.
(2)因为t>0,由(a2-2a)t≤t2+3t-46,
得:a2-2a≤$\frac{{t}^{2}+3t-46}{t}$,
对于a∈M,可得:a2-2a∈[-1,48).
所以:$\frac{{t}^{2}+3t-46}{t}$≥48,即:t2-45t-46≥0,
解得:t≥46或t≤-1,
∵t>0
∴t≤-1(舍去)
所以t的最小值为46.

点评 本题考查了二次方程的系数讨论的解集问题.同时考查了分离参数,构造参数方程思想解决恒成立的问题.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知等比数列{an}的前n项和为Sn,若$\frac{S_8}{S_4}$=4,则$\frac{{{S_{12}}}}{S_4}$=(  )
A.3B.4C.$\frac{13}{4}$D.13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.角α的终边过函数y=loga(x-3)+2的定点P,则sin2α+cos2α=(  )
A.$\frac{7}{5}$B.$\frac{6}{5}$C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合A={y|y=sinx,x∈R},B={x|x>0},则A∩B=(  )
A.(0,1)B.(0,1]C.[-1,0)D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直线l:y=ax将不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-6≤0}\\{x≥0,y≥0}\end{array}\right.$,表示的平面区域的面积分为相等的两部分,则实数a的值为(  )
A.$\frac{7}{11}$B.$\frac{9}{22}$C.$\frac{7}{13}$D.$\frac{9}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设等比数列{an}的各项均为正数,公比为q,前n项和为Sn,若对?n∈N*,有$\frac{{S}_{2n}}{{S}_{n}}$<5,则q的取值范围是(  )
A.(0,1]B.($\frac{1}{2}$,2)C.[1,$\sqrt{2}$)D.($\frac{\sqrt{2}}{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=$\sqrt{4-2x}$+$\sqrt{x}$的值域为[$\sqrt{2}$,$\sqrt{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=lg($\sqrt{1+4{x}^{2}}$-2x)+$\frac{1}{2}$,则f(lg3)+f(lg$\frac{1}{3}$)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,PA⊥平面ABCD,AD∥BC,∠ABC=90°,AB=BC=PA=1,AD=3,E是PB的中点.
(1)求证:AE⊥平面PBC;    
(2)求三棱锥C-AED的体积.

查看答案和解析>>

同步练习册答案