精英家教网 > 高中数学 > 题目详情
17.如图,PA⊥平面ABCD,AD∥BC,∠ABC=90°,AB=BC=PA=1,AD=3,E是PB的中点.
(1)求证:AE⊥平面PBC;    
(2)求三棱锥C-AED的体积.

分析 (1)推导出PA⊥BC,BC⊥AB,从而BC⊥面PAB,进而BC⊥AE,再由AE⊥PB,能证明AE⊥平面PBC.
(2)在面PAB内过E做EH∥PA,交AB于H,由VC-AED=VE-ACD,能求出三棱锥C-AED的体积.

解答 证明:(1)∵PA⊥平面ABCD,BC?面ABCD,
∴PA⊥BC,
又∠ABC=90°,∴BC⊥AB,
∵PA∩AB=A,∴BC⊥面PAB,
∵AE?平面PAB,∴BC⊥AE,
又AB=PA=1,E是PB的中点.∴AE⊥PB,
∵PB∩BC=B,∴AE⊥平面PBC.
解:(2)在面PAB内过E做EH∥PA,交AB于H,
∵PA⊥平面ABCD,∴EH⊥平面ABCD,
∴三棱锥C-AED的体积${V_{C-AED}}={V_{E-ACD}}=\frac{1}{3}•{S_{△ACD}}•EH=\frac{1}{4}$.

点评 本题考查线面垂直的证明,考查二棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知关于x的不等式ax2+ax+2>0的解集为R,记实数a的所有数值构成的集合为M.
(1)求M;
(2)若t>0,对?a∈M,有(a2-2a)t≤t2+3t-46,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,a2=3,且2Sn=n(an+1),n∈N*
(1)求{an}的通项公式;
(2)数列{bn}满足bn=pn-an,且{bn}的前n项和为Tn,若对任意n∈N*,都有Tn≤T6,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设数列{an}的前n项和Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;   
(2)记数列$\{\frac{n}{a_n}\}$的前n项和Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在棱长为a的正方体ABCD-A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E,F为CD上任意两点,且EF的长为定值,则以下四个值中为定值的编号是①②④.
①点P到平面QEF的距离;
②三棱锥P-QEF的体积;
③直线PQ与平面PEF所成的角;
④二面角P-EF-Q的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千克)对年消售量y(单位:t)和年利润z(单位:千克)的影响,对近8年的宣传费xi和年销售量yi(i=1,2,3,..8)数据作了初步处理,得到下面的散点图及一些统计量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2 $\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中:wi=$\sqrt{{x}_{i}}$$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(Ⅰ)根据散点图判断,y=a+bx与y=c+d $\sqrt{x}$,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
(Ⅱ)根据(I)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x,y的关系为z=0.2y-x,根据(II)的结果回答下列问题:
(i)当年宣传费x=49时,年销售量及年利润的预报值时多少?
(ii)当年宣传费x为何值时,年利润的预报值最大?并求出最大值
附:对于一组数据(u1,v1),(u2,v2)…..(un,vn),其回归线$\widehat{v}$=α+βu的斜率和截距的最小二乘估计分别为:β=$\frac{\sum_{i=1}^{n}({u}_{1}-\overline{u})({v}_{1}-\overline{v})}{\sum_{i=1}^{n}({u}_{1}-\overline{u})^{2}}$,α=$\overline{v}$-β$\overline{u}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某几何体的三视图如图所示,则该几何体的外接球的体积为(  )  
A.12πB.4$\sqrt{3}π$C.12$\sqrt{3}π$D.$\frac{4}{3}$$\sqrt{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+x,若f(2-a2)+f(a)>0,则实数a的取值范围是(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一辆卡车宽2.7米,要经过一个半径为4.5米的半圆形隧道,该隧道为双向车道,中间有隔离带,则这辆卡车的平顶车篷篷顶距离地面的高度不得超过(  )
A.1.4米B.3.0米C.3.6米D.4.5米

查看答案和解析>>

同步练习册答案