9£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=1+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}}$£¬£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑ=$\frac{sin¦È}{{1-{{sin}^2}¦È}}$£®
£¨1£©Ð´³öÖ±ÏßlµÄ¼«×ø±ê·½³ÌÓëÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÈôµãPÊÇÇúÏßCÉϵ͝µã£¬ÇóµãPµ½Ö±ÏßlµÄ¾àÀëµÄ×îСֵ£¬²¢Çó³ö´ËʱµãPµÄ×ø±ê£®

·ÖÎö £¨1£©¿ÉÒÔÏÈÏû²ÎÊý£¬Çó³öÖ±ÏßlµÄÆÕͨ·½³Ì£¬ÔÙÀûÓù«Ê½½«ÇúÏßCµÄ¼«×ø±ê·½³Ì»¯³ÉÆ½ÃæÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÀûÓõ㵽ֱÏߵľàÀ빫ʽ£¬Çó³öPµ½Ö±ÏßlµÄ¾àÀëµÄ×îСֵ£¬ÔÙ¸ù¾Ýº¯ÊýÈ¡×îÖµµÄÇé¿öÇó³öPµãµÄ×ø±ê£¬µÃµ½±¾Ìâ½áÂÛ£®

½â´ð ½â£º£¨1£©$\left\{{\begin{array}{l}{x=1+\sqrt{2}t}\\{y=\sqrt{2}t}\end{array}}\right.£¬£¨tΪ²ÎÊý£©$£¬ÏûÈ¥²ÎÊý¿ÉµÃx-y=1
Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦Ñcos¦È-¦Ñsin¦È=1¼´\sqrt{2}¦Ñcos£¨¦È+\frac{¦Ð}{4}£©=1$¡­£®£¨3·Ö£©
ÓÉ$¦Ñ=\frac{sin¦È}{{1-{{sin}^2}¦È}}$£®µÃ¦Ñcos2¦È=sin¦È⇒¦Ñ2cos2¦È=¦Ñsin¦È
µÃy=x2£¨x¡Ù0£©¡­..£¨5·Ö£©
£¨2£©ÉèP£¨x0£¬y0£©£¬Ôò${y_0}={x_0}^2£¨x¡Ù0£©$
µãPµ½Ö±ÏßlµÄ¾àÀëΪ$d=\frac{{|{x_0}-{y_0}-1|}}{{\sqrt{2}}}=\frac{{|{x_0}-{x_0}^2-1|}}{{\sqrt{2}}}=\frac{{|-{{£¨{x_0}-\frac{1}{2}£©}^2}-\frac{3}{4}|}}{{\sqrt{2}}}=\frac{{{{£¨{x_0}-\frac{1}{2}£©}^2}+\frac{3}{4}}}{{\sqrt{2}}}$
µ±${x_0}=\frac{1}{2}ʱ{d_{min}}=\frac{{3\sqrt{2}}}{8}£¬´ËʱP£¨\frac{1}{2}£¬\frac{1}{4}£©$¡­..£¨8·Ö£©
µ±$P£¨\frac{1}{2}£¬\frac{1}{4}£©$Pµ½Ö±ÏßlµÄ¾àÀë×îС£¬×îС${d_{min}}=\frac{{3\sqrt{2}}}{8}$¡­£®£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÆ½ÃæÖ±½Ç×ø±ê·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬±¾ÌâÄѶȲ»´ó£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®º¯Êýf£¨x£©=3x+x-3µÄÁãµãËùÔÚµÄÇø¼äÊÇ£¨¡¡¡¡£©
A£®£¨0£¬1£©B£®£¨1£¬2£©C£®£¨2.3£©D£®£¨3£¬4£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÔÚ¡÷ABCÖУ¬a=1£¬b=4£¬C=60¡ã£¬Ôò±ß³¤c=£¨¡¡¡¡£©
A£®13B£®$\sqrt{13}$C£®$\sqrt{21}$D£®21

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬a1=1£¬Sn=nan-n£¨n-1£©£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{an}ΪµÈ²îÊýÁУ¬²¢·Ö±ðÇó³öanµÄ±í´ïʽ£»
£¨2£©ÉèÊýÁÐ$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$µÄǰnÏîºÍΪPn£¬ÇóÖ¤£ºPn£¼$\frac{1}{2}$£»
£¨3£©ÉèCn=$\frac{{a}_{n}}{{2}^{n}}$£¬Tn=C1+C2+¡­+Cn£¬ÊԱȽÏTnÓë$\frac{n}{{{2^{n-1}}}}$µÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®½Ç¦ÁµÄÖձ߹ýº¯Êýy=loga£¨x-3£©+2µÄ¶¨µãP£¬Ôòsin2¦Á+cos2¦Á=£¨¡¡¡¡£©
A£®$\frac{7}{5}$B£®$\frac{6}{5}$C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Èôa6=-3£¬S6=12£¬Ôòa5µÈÓÚ£¨¡¡¡¡£©
A£®-3B£®-1C£®1D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èô¼¯ºÏA={y|y=sinx£¬x¡ÊR}£¬B={x|x£¾0}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®£¨0£¬1£©B£®£¨0£¬1]C£®[-1£¬0£©D£®[-1£¬1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÉèµÈ±ÈÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬¹«±ÈΪq£¬Ç°nÏîºÍΪSn£¬Èô¶Ô?n¡ÊN*£¬ÓÐ$\frac{{S}_{2n}}{{S}_{n}}$£¼5£¬ÔòqµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨0£¬1]B£®£¨$\frac{1}{2}$£¬2£©C£®[1£¬$\sqrt{2}$£©D£®£¨$\frac{\sqrt{2}}{2}$£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÔÚÈñ½Ç¡÷ABCÖУ¬½ÇA£¬BËù¶ÔµÄ±ß³¤·Ö±ðΪa£¬b£¬ÇÒ$2asinB=\sqrt{3}b$£®
£¨¢ñ£©Çó½ÇAµÄ´óС£»
£¨¢ò£©Èôa=3£¬Çó¡÷ABCÖܳ¤µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸