精英家教网 > 高中数学 > 题目详情
求函数的定义域:
(1)已知函数y=F(x)定义域为[1,3],求函数y=F(2x+1)的定义域;
(2)已知函数y=F(2x+1)的定义域为[1,3],求函数y=F(x)的定义域.
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:(1))由1≤2x+1≤3,解出即可,(2)由3≤2x+1≤7,解出即可.
解答: 解:(1)∵函数y=F(x)定义域为[1,3],
∴1≤2x+1≤3,
∴0≤x≤1,
∴函数y=F(2x+1)的定义域为:[0,1];
(2)∵函数y=F(2x+1)的定义域为[1,3],
∴3≤2x+1≤7,
∴函数y=F(x)的定义域为:[3,7].
点评:本题考查了函数的定义域的求法,求复合函数的定义域时,注意自变量的范围的变化,本题属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是R上的偶函数,且在(0,+∞)上单调递减,则f(a2-2a+3)与f(-2)的大小关系为(  )
A、f(a2-2a+3)>f(-2)
B、f(a2-2a+3)<f(-2)
C、f(a2-2a+3)≥f(-2)
D、f(a2-2a+3)≤f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx,下面结论错误的是(  )
A、f(x)的最小正周期是2π
B、f(x)在[0,
π
2
]上单调递增
C、f(x)[
π
4
3
4
π]上的最大值为
2
2
D、f(x)的值域为[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知sin2B-sin2C-sin2A=sinAsinC,则角B的大小为(  )
A、150°B、30°
C、120°D、60°

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx-φ)+1(A>0,ω>0,|φ|<π)在x=
π
3
处取得最大值为3,其图象相邻两条对称轴之间的距离为
π
2

(1)求函数f(x)的解析式;
(2)设α∈(0,
π
2
),则f(
α
2
)=2,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x+
a
x
-2lnx,a∈R
(1)讨论f(x)的单调区间;
(2)若对任意的x1,x2∈(0,+∞),且x1≠x2,有
f(x2)-f(x1)
x2-x1
<2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.
(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1
(2)是否存在过A1C的平面α,使得直线BC1∥α平行,若存在请作出平面α并证明,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数数列{an}的前n项和Sn满足:2Sn=an2+an
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
2an
(2an-1)(2an+1-1)
+(-1)nan,求数列{bn}的前2n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:2x≤256且log
1
2
1
x
1
2

(1)求x的取值范围;
(2)求函数f(x)=log2
x
2
).log 
2
x
2
)的最大值和最小值.

查看答案和解析>>

同步练习册答案