精英家教网 > 高中数学 > 题目详情
已知函数f(x)是R上的偶函数,且在(0,+∞)上单调递减,则f(a2-2a+3)与f(-2)的大小关系为(  )
A、f(a2-2a+3)>f(-2)
B、f(a2-2a+3)<f(-2)
C、f(a2-2a+3)≥f(-2)
D、f(a2-2a+3)≤f(-2)
考点:奇偶性与单调性的综合
专题:函数的性质及应用
分析:根据函数奇偶性和单调性之间的关系即可得到结论.
解答: 解:∵函数f(x)是R上的偶函数,∴f(-2)=f(2),
∵a2-2a+3=(a-1)2+2≥2,且且在(0,+∞)上单调递减,
∴f(a2-2a+3)≤f(2),
即f(a2-2a+3)≤f(-2),
故选:D
点评:本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①?x∈R,x2≥x;   
②?x∈R,x2≥x;
③命题:“若P则?q”的否命题是:“若P则q”
④“x2≠1”的充要条件是“x≠1,或x≠-1”
其中正确命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=ex-x-2的单调递减区间是(  )
A、(-∞,0)
B、(0,+∞)
C、(-∞,1)
D、(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线l过点P(1,0)与双曲线x2-
y2
4
=1只有一个公共点,则这样的直线有(  )
A、4条B、3条C、2条D、1条

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线6y2-x=0的准线方程是(  )
A、x=-
1
24
B、y=
1
24
C、x=-
3
2
D、y=
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={1,2,3,4,5,6},B={4,5,6,7},则满足S⊆A且S∩B≠∅的集合S的个数是(  )
A、57B、56C、49D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足条件
x+2y-5≤0
2d+y-4≤0
x≥0
y≥1
 
目标函数z=2x-y,则(  )
A、zmax=
5
2
B、zmax=0
C、zmax=-1
D、zmax=2

查看答案和解析>>

科目:高中数学 来源: 题型:

直线(m+2)x+(2-m)y=2m在x轴上的截距为3,则m的值是(  )
A、
6
5
B、-
6
5
C、6
D、-6

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数的定义域:
(1)已知函数y=F(x)定义域为[1,3],求函数y=F(2x+1)的定义域;
(2)已知函数y=F(2x+1)的定义域为[1,3],求函数y=F(x)的定义域.

查看答案和解析>>

同步练习册答案