精英家教网 > 高中数学 > 题目详情
设函数f(x)=sin(ωx+φ),条件P:“f(0)=0”;条件Q:“f(x)为奇函数”,则P是Q的( )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
【答案】分析:根据奇函数的图象和性质,我们分别判断条件P⇒条件Q与条件Q⇒条件P的真假,进而充要条件的定义,即可得到答案.
解答:解:若“f(0)=0”,则sinφ=0,则φ=kπ,k∈Z,
则f(x)=sin(ωx+kπ),k∈Z,
则f(-x)=sin(-ωx+kπ)=-f(x),即“f(x)为奇函数”,
故P是Q的充分条件;
若“f(x)为奇函数”,且函数的f(x)的定义域为R,则“f(0)=0”一定成立
故P是Q的必要条件;
P是Q的充要条件;
故选A
点评:本题考查的知识点是必要条件,充分条件与充要条件的判断,其中根据正弦型函数的图象和性质,分别判断出条件P⇒条件Q与条件Q⇒条件P的真假,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象过点(
π8
,-1).
(1)求φ;  
(2)求函数y=f(x)的周期和单调增区间;
(3)在给定的坐标系上画出函数y=f(x)在区间,[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2π+?)(-π<?<0),y=f(x)图象的一条对称轴是直线x=
π8

(Ⅰ)求?;
(Ⅱ)求函数y=f(x)的单调增区间;
(Ⅲ)证明直线5x-2y+c=0与函数y=f(x)的图象不相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=
π8

(1)求φ;
(2)怎样由函数y=sin x的图象变换得到函数f(x)的图象,试叙述这一过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)将函数f(x)的图象向右平移
π
3
个单位长度,得到函数g(x)的图象,求g (x)在区间[-
π
6
π
3
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+φ)(ω>0,-
π
2
<?<
π
2
),给出以下四个论断:
①它的图象关于直线x=
π
12
对称;        
②它的周期为π;
③它的图象关于点(
π
3
,0)对称;      
④在区间[-
π
6
,0]上是增函数.
以其中两个论断作为条件,余下两个论断作为结论,写出你认为正确的两个命题:
(1)
①③⇒②④
①③⇒②④
; (2)
①②⇒③④
①②⇒③④

查看答案和解析>>

同步练习册答案