精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Asin(2x+
6
)
(A>0,x∈R)的最小值为-2.
(1)求f(0);
(2)若函数f(x)的图象向左平移?(?>0)个单位长度,得到的曲线关于y轴对称,求?的最小值.
(1)因为函数f(x)=Asin(2x+
6
)
(A>0,x∈R)的最小值为-2,
所以A=2,f(x)=2sin(2x+
6
)
…(2分),
f(0)=2sin
6
=1
.…(4分)
(2)函数f(x)的图象向左平移?(?>0)个单位长度,可得y=2sin[2(x+?)+
6
]
.…(6分)
因为y=2sin[2(x+?)+
6
]
的图象关于y轴对称,所以2(0+?)+
6
=
π
2
+kπ,k∈Z
.…(8分)
解得?=-
π
6
+
2
,k∈Z
,…(10分)
因为?>0,所以?的最小值为
π
3
.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案