精英家教网 > 高中数学 > 题目详情
16.若将函数f(x)=2sinxcosx-2sin2x+1的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{3π}{8}$D.$\frac{3π}{4}$

分析 由条件利用二倍角公式化简函数的解析式,根据y=Asin(ωx+φ)的图象变换规律,以及正弦函数的图象的对称性求得$\frac{π}{4}$-2φ=kπ+$\frac{π}{2}$,k∈Z,从而得到φ的最小正值.

解答 解:将函数f(x)=2sinxcosx-2sin2x+1=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)的图象向右平移φ个单位,
可得y=$\sqrt{2}$sin[2(x-φ)+$\frac{π}{4}$]=$\sqrt{2}$sin(2x+$\frac{π}{4}$-2φ)的图象的图象.
再根据所得图象关于y轴对称,可得$\frac{π}{4}$-2φ=kπ+$\frac{π}{2}$,k∈Z,
故φ的最小正值是$\frac{3π}{8}$,
故选:C.

点评 本题主要考查二倍角公式,y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,AD=AB=4,CD=1,动点P在边BC上,且满足$\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AD}$(m,n均为正实数),则$\frac{1}{m}+\frac{1}{n}$的最小值为$\frac{7+4\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入的部分数据如下表:
xx1$\frac{π}{12}$x2$\frac{7π}{12}$x3
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)+B141-21
(Ⅰ)求x2的值及函数f(x)的解析式;
(Ⅱ)请说明把函数g(x)=sinx的图象上所有的点经过怎样的变换可以得到函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知角θ的终边经过点P(2x,-6),且tanθ=-$\frac{3}{4}$,则x的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在三角形ABC中,角A,B,C所对的边分别是a,b,c,且sin2B=sin2A+sin2C-sinAsinC.
(1)求角B的值;
(2)若b=$\sqrt{3}$,S△ABC=$\frac{\sqrt{3}}{2}$,求$\overrightarrow{AB}$•$\overrightarrow{BC}$及a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中正确的个数是(  )
①命题“?x∈(1,+∞),2x>2”的否定是“?x∉(1,+∞),2x≤2”
②“a=2”是“|a|=2”的必要不充分条件;
③若命题p为真,命题?q为真,则命题p∧q为真;
④命题“在△ABC中,若$sinA<\frac{1}{2}$,则$A<\frac{π}{6}$”的逆否命题为真命题.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设α∈(0,$\frac{π}{2}$),sinα=$\frac{\sqrt{6}}{3}$,则tanα等于(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知具有线性相关关系的两个量x,y之间的一组数据如表:
x01234
y2.24.34.5m6.7
且回归直线方程是$\widehat{y}$=0.95x+2.6,则m的值为(  )
A.4.5B.4.6C.4.7D.4.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=sinxcos(x+$\frac{π}{6}$)+1.
(1)求函数f(x)的单调递减区间;
(2)在△ABC中,a,b,c分别是角A、B、C的对边f(C)=$\frac{5}{4}$,b=4,$\overrightarrow{AC}$•$\overrightarrow{BC}$=12,求c.

查看答案和解析>>

同步练习册答案