| A. | $\frac{π}{8}$ | B. | $\frac{π}{4}$ | C. | $\frac{3π}{8}$ | D. | $\frac{3π}{4}$ |
分析 由条件利用二倍角公式化简函数的解析式,根据y=Asin(ωx+φ)的图象变换规律,以及正弦函数的图象的对称性求得$\frac{π}{4}$-2φ=kπ+$\frac{π}{2}$,k∈Z,从而得到φ的最小正值.
解答 解:将函数f(x)=2sinxcosx-2sin2x+1=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)的图象向右平移φ个单位,
可得y=$\sqrt{2}$sin[2(x-φ)+$\frac{π}{4}$]=$\sqrt{2}$sin(2x+$\frac{π}{4}$-2φ)的图象的图象.
再根据所得图象关于y轴对称,可得$\frac{π}{4}$-2φ=kπ+$\frac{π}{2}$,k∈Z,
故φ的最小正值是$\frac{3π}{8}$,
故选:C.
点评 本题主要考查二倍角公式,y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | x1 | $\frac{π}{12}$ | x2 | $\frac{7π}{12}$ | x3 |
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| Asin(ωx+φ)+B | 1 | 4 | 1 | -2 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 0 | 1 | 2 | 3 | 4 |
| y | 2.2 | 4.3 | 4.5 | m | 6.7 |
| A. | 4.5 | B. | 4.6 | C. | 4.7 | D. | 4.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com