精英家教网 > 高中数学 > 题目详情
20.椭圆$\frac{x^2}{4}+\frac{y^2}{2}=1$上的一点M到左焦点的距离为3,那么点M到右准线的距离为$\frac{\sqrt{2}}{4}$.

分析 先根据椭圆方程求得椭圆的半焦距c,进而可求得离心率和准线方程,进而根据椭圆的第二定义求得点P到右准线的距离.

解答 解:根据椭圆的第二定义可知P到F1的距离与其到准线的距离之比为离心率,
依题意可知a=2,b=$\sqrt{2}$,
∴c=$\sqrt{4-2}$=$\sqrt{2}$,
∴e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,右准线方程为x=$\frac{{a}^{2}}{c}$=$2\sqrt{2}$.
∵P到椭圆左焦点的距离为3,
∴P到椭圆右焦点的距离为1,
∴点P到椭圆右准线的距离$\frac{1}{2\sqrt{2}}$=$\frac{\sqrt{2}}{4}$.
故答案为:$\frac{\sqrt{2}}{4}$.

点评 本题主要考查了椭圆的简单性质,解题的关键是灵活利用椭圆的第二定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.某产品的销售收入y1(万元)是产量x(千台)的函数:${y_1}=17{x^2}$(x>0),生产成本y2万元是产量x(千台)的函数:${y_2}=2{x^3}-{x^2}$(x>0),为使利润最大,应生产(  )
A.9千台B.8千台C.7千台D.6千台

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列命题正确的是(  )
A.若两个平面平行于同一条直线,则这两个平面平行
B.若有两条直线与两个平面都平行,则这两个平面平行
C.若有一条直线与两个平面都垂直,则这两个平面平行
D.若有一条直线与这两个平面所成的角相等,则这两个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{m}$=(a,-2),$\overrightarrow{n}$=(1,1-a),且$\overrightarrow{m}$∥$\overrightarrow{n}$,则实数a的值为(  )
A.2B.2 或-1C.-2或1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若曲线y=2x-x3在点P处的切线的斜率是-1,则P的横坐标为±1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式$\frac{2x-1}{x+1}$<0的解集是(-1,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知定义在R上的函数f(x)=ln(e2x+1)+ax(a∈R)是偶函数.
(1)求实数a的值;并判断f(x)在[0,+∞)上的单调性;(不必证明)
(2)若f(x2+$\frac{1}{x^2}$)>f(mx+$\frac{m}{x}$)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin2x+acos2x的图象关于直线x=-$\frac{π}{8}$对称.
(1)求实数a的值;
(2)若对任意的x∈[0,$\frac{π}{4}$],使得m[f(x)+8]+2=0有解,求实数m的取值范围;
(3)若x∈(0,$\frac{5π}{8}$)时,关于x的方程f2(x)-2nf(x)+1=0有四个不等实根,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+4x
(1)求函数f(x),x∈R的解析式;
(2)若函数g(x)=f(x)-2ax+2,x∈[1,4],记函数g(x)的最大值为h(a),求函数h(a)的解析式,并写出函数h(a)的值域.

查看答案和解析>>

同步练习册答案