分析 先计算出该不等式对应方程得判别式,然后通过讨论判别式的符号来判断该不等式对应函数与x轴的位置关系,然后根据图象写出不等式的解.
解答 解:∵△=a2-16,
①当△>0,即a>4,或a<-4时,
由x2+ax+4=0得x=$\frac{-a±\sqrt{{a}^{2}-16}}{2}$,
此时原不等式的解为:$\frac{-a-\sqrt{{a}^{2}-16}}{2}$<x<$\frac{-a+\sqrt{{a}^{2}-16}}{2}$,
②当△≤0,即-4≤a≤4时,原不等式无解.
综上所述,当a>4,或a<-4时,原不等式的解集为:($\frac{-a-\sqrt{{a}^{2}-16}}{2}$,$\frac{-a+\sqrt{{a}^{2}-16}}{2}$),
当-4≤a≤4时,原不等式的解集为∅.
点评 解一元二次不等式的基本思想是函数思想、数形结合及分类讨论思想,讨论的依据一般是函数图象与x轴的位置关系,然后根据图象写出不等式的解.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 4 | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M∩N={4,6} | B. | M∪N=U | C. | (∁UN)∪M=U | D. | (∁UM)∩N=N |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1+a+b}{1-a+b}$ | B. | $\frac{a+1-b}{a-1+b}$ | C. | $\frac{1+a}{b}$ | D. | $\frac{b}{1-a}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com