精英家教网 > 高中数学 > 题目详情
lg125+lg8+log337=
 
考点:对数的运算性质
专题:计算题
分析:按照对数的运算性质进行计算即可.
解答: 解:lg125+lg8+log337
=lg(125×8)+7log33
=lg1000+7
=3+7
=10;
故答案为:10.
点评:本题考查了对数的运算性质的应用问题,解题时应按照对数的运算性质进行计算,即可得到正确答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

深圳科学高中致力于培养以科学、技术、工程和数学见长的创新型高中学生,“工程技术”专用教室是学校师生共建的创造者的平台,该教室内某设备D价值24万元,D的价值在使用过程中逐年减少,从第2年到第5年,每年初D的价值比上年初减少2万元;从第6年开始,每年初D的价值为上年初的25%,
(1)求第5年初D的价值a5
(2)求第n年初D的价值an的表达式;
(3)若设备D的价值an大于2万元,则D可继续使用,否则须在第n年初对D更新,问:须在哪一年初对D更新?

查看答案和解析>>

科目:高中数学 来源: 题型:

若A={x|-3≤x≤4},B={x|2m-1≤x≤2m+1},A∩B=∅,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在实数集R上的奇函数,且当x∈(-∞,0)时,xf′(x)<f(-x)成立(其中f′(x)是f(x)的导函数).若a=
3
f(
3
),b=f(1),c=(log2
1
4
)f(log2
1
4
),则a、b、c的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={0,1},B={2,3},设映射f:A→B,对A中的每一个元素x总有x+f(x)为偶数,那么从A到B的映射的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2x+3y+4z=10,则x2+y2+z2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足约束条
x-y+6≥0
x+y≥0
x≤3
,则z=
9x
3-y
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

二项式(x+1)7的展开式中含x3项的系数值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式x2+ax+1≥0对一切实数x∈R都成立,则实数a的最大值为
 

查看答案和解析>>

同步练习册答案